Меню Рубрики

Задачи с дробями с процентами

Рассмотрим три основных типа задач на проценты.

Чтобы найти процент от числа, нужно число умножить на процент.

Предприятие изготовило за квартал 500 насосов, из которых 60% имели высшую категорию качества. Сколько насосов высшей категории качества изготовило предприятие?

Найдем 60% от 500 (общее количество насосов).

500 · 0,6 = 300 насосов высшей категории качества.

Ответ: 300 насосов высшей категории качества.

Чтобы найти число по его проценту, нужно его известную часть разделить на то, сколько процентов она составляет от числа.

Так как задачи «процент по числу» и «число по его проценту» очень похожи и часто не сразу понятно какой тип задачи перед нами, старайтесь внимательно читать текст. Если вам встречаются слова «который», «что составляет» и «который составляет», скорее всего перед вами задача «число по его проценту».

Ученик прочитал 138 страниц, что составляет 23% числа всех страниц в книге. Сколько страниц в книге?

Итак, нам неизвестно сколько всего страниц в книге. Но мы знаем, что часть, которую прочитал ученик ( 138 страниц) составляет 23% от общего количества страниц в книге.

Так как 138 стр. — это всего лишь часть, само количество страниц, естественно, будет больше 138 . Это поможет нам при проверке.

Проверка: 600 > 138 (это означает, что 138 является частью 600 ).

Ответ: 600 (стр.) — общее количество страниц в книге.

Чтобы найти, сколько процентов одно число составляет от другого, нужно ту часть, о которой спрашивается, разделить на общее количество и умножить на 100% .

Из 200 арбузов 16 оказались незрелыми. Сколько процентов всех арбузов составили незрелый арбузы?

О чем спрашивают? О незрелых арбузах. Значит, 16 делим на общее количество арбузов и умножаем на 100% .

Ответ: 8% — составляют незрелые арбузы от всех арбузов.

источник

Разделы: Математика

В последние годы понятие «проценты» все чаще встречается в повседневной жизни. Повышение и снижение тарифов на услуги, инфляция, проценты по кредитам, сезонные распродажи- все эти словосочетания, а главное то, что стоит за ними, должны быть понятны каждому, начиная с детского возраста. Очевидно, отвечая требованиям времени, составители вариантов ГИА и ЕГЭ по математике включили задачи на проценты в основную часть заданий. Между тем тема «Проценты. Задачи на проценты» изучается в 6-м классе, а во всех последующих классах проценты появляются периодически в текстовых задачах, вызывая явно отрицательные эмоции у большинства учеников. Большая часть учащихся помнит, что для нахождения процента от числа нужно составить пропорцию и решить ее. Но как составить пропорцию, если в задаче сказано, что во второй день туристы прошли на 20 % меньший путь, чем в первый день, а сколько прошли в первый тоже неизвестно? Для того чтобы справиться с заданием типа В9 в демоверсии ЕГЭ 2009 года, нужно достаточно глубоко разобраться в теме «Задачи на проценты». Как научить детей решать задачи на проценты различного уровня сложности и когда?

На основании собственной практики работы авторам представляется, что использование метода решения задач на дроби и проценты, предложенного в учебнике Г.В.Дорофеева и Л.Г.Петерсон, при определенном изложении материала дает оптимальный результат. О нашем подходе к изучению темы «Задачи на дроби и проценты» и будет рассказано ниже.

На первом уроке темы «Задачи на дроби» в пятом или шестом классе (в зависимости от программы) говорится, что все задачи на дроби делятся на три типа:

  1. Задачи на нахождение части от числа, выраженной дробью
  2. Задачи на нахождение числа по его части, выраженной дробью
  3. Задачи на нахождение дроби, которую одно число составляет от другого.

Затем каждый тип задач отрабатывается в течение одного-двух уроков по одинаковой схеме. Покажем ее на примере задач первого типа.

Учитель: Мы с вами уже умеем решать задачи, в которых нужно найти какую-то часть от числа. Давайте решим такую: В классе 20 человек. Из них 2\5 девочки. Сколько девочек в классе?

Учeники предлагают 20 разделить на 5 и затем результат умножить на 2 .Такие задачи они решали еще в начальной школе. Учитель соглашается, но предлагает записать решение в виде выражения, а затем преобразовать его следующим образом:

При этом два действия — деление на знаменатель дроби, а затем умножение на ее числитель заменим одним действием – умножением на дробь.

Приходим к правилу: Чтобы найти часть от числа, выраженную дробью, надо это число умножить на дробь.

К задаче составляется схема, по которой ясно видно, какая величина принимается за единицу («целое») и что является ее частью.

Затем каждая следующая задача решается аналогично: составляется схема, вслух проговаривается правило, по нему составляется выражение. Нужно пресекать попытки учащихся решать задачи так, как они решали раньше, т.е. сначала разделить на знаменатель дроби, а затем умножить на числитель. Мы объясняем, что «новый» способ легче для решения более сложных задач. Кроме того, показываем детям аналогию действия по нахождению дробной части числа с действием по нахождению числа в n раз больше данного. Пример: В классе 20 человек. Сколько человек в двух таких классах? 20 умножить на 2. А в трех? 20 умножить на 3. А в 2\5 класса? 20 умножить на 2\5.

Два других типа задач разбираются аналогично. В учебнике Г.В. Дорофеева, Л.Г. Петерсон «Математика 5,часть 2» даны формулировки соответствующих правил и схем к задачам. Затем проводится обобщающий урок по теме. На нем еще раз разбираются все типы задач на примере одной прямой и двух обратных к ней задач. Учитель просит какого-нибудь ученика придумать несложную задачу на нахождение части от числа, выраженной дробью.

Простой пример: В корзине лежало 16 грибов, Из них 3\4 белые. Сколько белых грибов было в корзине? На доске чертится схема, а затем записывается решение в соответствии с нужным правилом.

Теперь учитель предлагает составить задачу другого типа по тем же данным. В случае затруднения он сам произносит текст этой задачи. В корзине лежало 12 белых, что составляет 3\4 всех грибов, лежащих в корзине. Сколько всего грибов было в корзине? Опять составляется схема и записывается решение.

С составлением задачи третьего типа дети обычно уже справляются самостоятельно. В корзине лежало 16 грибов, из них 12 белых. Какую часть всех грибов составляют белые?

На дом задается творческая работа. Каждому ученику нужно самому придумать, записать и красиво оформить 3 задачи: прямую и 2 обратные. Обязательные условия оформления работы:

  • Назван тип и записано правило, по которому решается каждая из задач
  • Начерчена схема к каждой задаче
  • Записаны решения и ответы
  • Числа и дроби выбраны достаточно простые
  • Все работы вывешиваются на стенде и дети голосованием выбирают три лучшие, на их взгляд.

О чем только не придумываются задачи: часть красных роз в саду и часть «Мерседесов» на автосалоне, часть гнилых помидоров среди купленных и часть золотых монет среди найденного старинного клада. Детская фантазия безгранична. Но практика показала, что дети на годы запоминают придуманные задачи, а заодно и их решения.

В последующем при решении более сложных комбинированных задач на дроби учитель постоянно акцентирует внимание на том, что нужно найти в каждом промежуточном действии, т.е. какой тип задачи и по какому правилу действуем. Правила каждый раз проговариваются вслух. Вспомогательные схемы уже можно не чертить. Постепенно даже слабые ученики усваивают решение задач на дроби, ошибок становится все меньше.

Когда начинается тема: «Проценты. Задачи на проценты», учащимся достаточно четко разъяснить, что проценты – это те же дроби со знаменателем 100.

Снова вспоминаем три типа задач и теперь формулируем правила, как считать:

  1. Процент от числа (т.е. часть, зная целое)
  2. Целое по его проценту (т.е. части)
  3. Процентное отношение (т.е. какую часть в процентах одно число составляет от другого)

Формулировка правил, формулы и схемы даны в учебнике «Математика 6, часть 1» тех же авторов.

Задачи всех трех типов опять последовательно отрабатываются на уроках. Снова проводится обобщающий урок по теме «Задачи на проценты», на котором дети вспоминают свои задачи на дроби. Те же три задачи формулируем иначе. В корзине лежало 16 грибов. Из них 75% составляли белые. Сколько белых грибов было в корзине? В корзине лежало 12 белых, что составляло 75% всех грибов, лежащих в корзине. Сколько всего грибов в корзине? И наконец: В корзине из 16 грибов было 12 белых. Какой процент составляют белые от всех грибов в корзине? На дом учащимся опять задается творческая работа. Предлагается переделать свои задачи в задачи на проценты, сохранив по возможности не только условия, но и все числа, переведя дроби в соответствующие проценты. Задачи оформляются по прежним правилам, только без красивых картинок.

В качестве заключительного урока хорошо провести устный зачет. На нем каждый ученик должен ответить одно из правил (кому какое достанется), рассказать условие своей задачи, которую нужно решать, действуя по этому правилу, начертить схему и записать решение.

Далее можно переходить к решению более сложных, комбинированных задач.

Следует обратить внимание на задачи типа: «На сколько процентов 72 меньше, чем 18?». Мы советуем, особенно на первых порах, решать их только со схемами. Кроме того, учащиеся должны твердо усвоить и запомнить, что то, с чем сравнивается, принимается за 100%. Поэтому решение любой задачи нужно начинать с вопроса: «Что мы принимаем за 100%?». Далее чертится схема:

По ней ясно видно, что задачу можно решать двумя способами. Первый способ:

  1. Найти, на сколько 72 больше, чем 18? –на 54
  2. Сколько % 54 составляет от 18 ?–(54:18)*100% (действуем по правилу- Как найти процентное отношение двух чисел? –Первое число разделить на второе и умножить на 100%)
  1. Сколько % 72 составляет от 18?- (та же цепочка рассуждений, что и во 2-м действии предыдущего решения, приводит нас к ответу 400%)
  2. На сколько % это число больше 100%? -400%-100%=300%

При решении сложных задач на дроби и проценты, на наш взгляд, очень полезно (особенно для сильных учащихся) пытаться решать задачу несколькими способами. Если дети видят эти способы, это значит, что они действуют не автоматически, по заученному правилу, а разбираются в сути задачи.

Большая часть класса, в конце концов, усваивает алгоритмы решения задач различных типов. Поэтому, когда через некоторое время в теме: «Пропорции» начинаем разбирать решение задач на проценты методом пропорции, ученики часто говорят, что им легче «считать по правилам». Но мы объясняем учащимся, что это – еще один способ решения таких задач, который им очень пригодится в будущем на уроках химии.

Практика показала, что благодаря тщательному разбору тем в 5-6 классах: многократному вычерчиванию схем и проговариванию вслух правил, выполнению творческих заданий по составлению прямых и обратных задач разного типа – принципы решения задач на дроби и проценты не только хорошо усваиваются, но и не забываются с годами.

В 7-8 классах при решении текстовых задач достаточно большая часть учащихся может составить математическую модель ситуации, описанной в начале статьи. Если в первый день туристы прошли x км, а во второй на 20% меньше, чем в первый, то x- это 100%- (то с чем сравнивают). А путь во второй день составляет 80% от пути в первый день, т.е. от x, что можно вычислить по правилу нахождения процента от числа и получить 0,8x км.

На факультативных занятиях теми же методами решаются задачи на сплавы и растворы. В 9 классе при подготовке к экзамену по сборнику С.А.Шестакова мы снова вспоминаем три типа задач, схемы и правила их решения, которые теперь записываются в общем виде.

Первая параллель, с которой тема «Задачи на дроби и проценты» разбиралась по описанной выше методике, сейчас — 10 класс. Надеемся, что усвоенные алгоритмы при соответствующем повторении и тренинге помогут им успешно справиться с задачами типа В9 при решении ЕГЭ по математике в следующем году.

В заключение хочется отметить, что выбранная нами методика вовсе не предполагает работу по программе Г.В.Дорофеева и Л.Г.Петерсон, тем более что она теперь исключена из списка рекомендованных программ. Задачи на дроби и на проценты решаются в 5 и 6 классах при работе по любой программе: Н.Я. Виленкина, С.М. Никольского и др. Просто при изучении данной темы можно воспользоваться предложенным выше методом и соответствующим образом разбирать задачи на уроках математики на протяжении всего курса. Такой подход кажется авторам оптимальным для подготовки учащихся по данной теме.

источник

Чтобы выразить часть в долях целого, нужно часть разделить на целое.

Задача 1. В классе 30 учащихся, отсутствуют четверо. Какая часть учащихся отсутствует?

Решение:

Ответ: в классе отсутствует учащихся.

Для решения задач, в которых требуется найти часть целого справедливо следующее правило:

Если часть целого выражена дробью, то чтобы найти эту часть, можно целое разделить на знаменатель дроби и результат умножить на её числитель.

Задача 1. Было 600 рублей, этой суммы истратили. Сколько денег истратили?

Решение: чтобы найти от 600 рублей, надо эту сумму разделить на 4 части, тем самым мы узнаем, сколько денег составляет одна четвёртая часть:

Ответ: истратили 150 рублей.

Задача 2. Было 1000 рублей, этой суммы истратили. Сколько денег было истрачено?

Решение: из условия задачи мы знаем, что 1000 рублей состоит из пяти равных частей. Сначала найдём сколько рублей составляет одна пятая часть от 1000, а затем узнаем сколько рублей составляют две пятых:

1) 1000 : 5 = 200 (р.) – одна пятая часть.

2) 200 · 2 = 400 (р.) – две пятых части.

Эти два действия можно объединить: 1000 : 5 · 2 = 400 (р.).

Ответ: было истрачено 400 рублей.

Второй способ нахождения части целого:

Чтобы найти часть целого, можно умножить целое на дробь, выражающую эту часть целого.

Задача 3. По уставу кооператива, для правомочности отчётного собрания на нём должно присутствовать не менее членов организации. В кооперативе 120 членов. При каком составе может состояться отчётное собрание?

Решение:

Ответ: отчётное собрание может состояться при наличии 80 членов организации.

Для решения задач, в которых требуется найти целое по его части справедливо следующее правило:

Если часть искомого целого выражена дробью, то чтобы найти это целое, можно данную часть разделить на числитель дроби и результат умножить на её знаменатель.

Задача 1. Потратили 50 рублей, это составило от первоначальной суммы. Найдите первоначальную сумму денег.

Решение: из описания задачи мы видим, что 50 рублей в 6 раз меньше первоначальной суммы, т. е. первоначальная сумма в 6 раз больше, чем 50 рублей. Чтобы найти эту сумму, надо 50 умножить на 6:

Ответ: первоначальная сумма – 300 рублей.

Задача 2. Потратили 600 рублей, это составило от первоначальной суммы денег. Найдите первоначальную сумму.

Читайте также:  Как отключить нежелательные подписки на билайне

Решение: будем считать, что искомое число состоит из трёх третьих долей. По условию две трети числа равны 600 рублей. Сначала найдём одну треть от первоначальной суммы, а затем сколько рублей составляют три третьих (первоначальная сумма):

Ответ: первоначальная сумма – 900 рублей.

Второй способ нахождения целого по его части:

Чтобы найти целое по величине выражающей его часть, можно разделить эту величину на дробь, выражающую данную часть.

Задача 3. Отрезок AB, равный 42 см, составляет длины отрезка CD. Найти длину отрезка CD.

Решение:

Ответ: длина отрезка CD 70 см.

Задача 4. В магазин привезли арбузы. До обеда магазин продал , после обеда – привезённых арбузов, и осталось продать 80 арбузов. Сколько всего арбузов привезли в магазин?

Решение: сначала узнаем, какую часть от привезённых арбузов составляет число 80. Для этого примем за единицу общее количество привезённых арбузов и вычтем из неё то количество арбузов, которое получилось реализовать (продать):

И так, мы узнали, что 80 арбузов составляет от общего количества привезённых арбузов. Теперь узнаем сколько арбузов от общего количества составляет , а затем сколько арбузов составляют (количество привезённых арбузов):

2) 80 : 4 · 15 = 300 (арбузов)

Ответ: всего в магазин привезли 300 арбузов.

источник

Описание презентации по отдельным слайдам:

Задачи на проценты и дроби из ЕГЭ

Флакон шампуня стоит 160 рублей. Какое наибольшее число флаконов можно купить на 1000 рублей во время распродажи, когда скидка составляет 25% ?

Шариковая ручка стоит 40 рублей. Какое наибольшее число таких ручек можно будет купить на 900 рублей после повышения цены на 10%?

Розничная цена учебника 180 рублей, она на 20% выше оптовой цены. Какое наибольшее число таких учебников можно купить по оптовой цене на 10 000 рублей?

Студент получил свой первый гонорар в размере 700 рублей за выполненный перевод. Он решил на все полученные деньги купить букет тюльпанов для своей учительницы английско­го языка. Какое наибольшее количество тюльпанов сможет купить студент, если удержанный у него налог на доходы составляет 13% гонорара, тюльпаны стоят 60 рублей за штуку и букет должен состоять из нечетного числа цветов?

Железнодорожный билет для взрослого стоит 720 рублей. Стоимость билета для школьника составляет 50% от стоимости билета для взрослого. Группа состоит из 15 школьников и 2 взрослых. Сколько рублей стоят билеты на всю группу?

Цена на электрический чайник была повышена на 16% и составила 3480 рублей. Сколько рублей стоил чайник до повышения цены?

Номер материала: ДБ-1705073

ВНИМАНИЮ УЧИТЕЛЕЙ: хотите организовать и вести кружок по ментальной арифметике в своей школе? Спрос на данную методику постоянно растёт, а Вам для её освоения достаточно будет пройти один курс повышения квалификации (72 часа) прямо в Вашем личном кабинете на сайте «Инфоурок».

Пройдя курс Вы получите:
— Удостоверение о повышении квалификации;
— Подробный план уроков (150 стр.);
— Задачник для обучающихся (83 стр.);
— Вводную тетрадь «Знакомство со счетами и правилами»;
— БЕСПЛАТНЫЙ доступ к CRM-системе, Личному кабинету для проведения занятий;
— Возможность дополнительного источника дохода (до 60.000 руб. в месяц)!

Пройдите дистанционный курс «Ментальная арифметика» на проекте «Инфоурок»!

Не нашли то что искали?

Вам будут интересны эти курсы:

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение редакции может не совпадать с точкой зрения авторов.

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако редакция сайта готова оказать всяческую поддержку в решении любых вопросов связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

источник

Рассмотрены разные задачи на дроби и проценты, которые включаются в итоговую проверку математической подготовки за курс основной и средней школы

Разные задачи на дроби и проценты

Задача 1. Нахождение целого по его части.

В сборнике фантастики две повести. Первая занимает 35 страниц, а вторая – книги. Сколько всего страниц в книге?

Сначала найдем, какую часть рукописи занимает первая повесть: 1 – , а потом целое по его части: 35 :

Задача 2. Нахождение целого по его процентам.

Летом на дачу с детским садом выехали 180 детей. Известно, что 10% детей не поехали на дачу. Сколько всего детей в детском саду?

Выразим в процентах число детей, которые поехали на дачу:
100% — 10% = 90% и продолжим решение.

Если 90% — это 180 детей, то 10% в 9 раз меньше, т.е. 20 детей, а 100% — это 200 детей.

180 детей составляют 90%, т.е. 0,9 всех детей. Найдем целое по его части:
180 : 0,9 = 1800 : 9 = 200.

Задача 3. Выражение остатка через часть целого.

На пошив детской одежды ушел весь рулон ткани. Из рулона сшили куртки, из четверти рулона – юбки, из оставшихся 24 м сшили несколько брюк. Сколько всего метров ткани было в рулоне?

Найдем, из какой части всего рулона сшили куртки и юбки: . Теперь понятно, что на пошив брюк осталась часть, равная 1 – рулона, которая составляет 24 м. Значит, во всем рулоне было 24 :

Задача 4. Выражение остатка процентами целого.

Андрей за работу над новым проектом получил премию. Он истратил часть денег на подарки: 5% — родителям, 10% — жене, 7% — сыну и у него осталось
11700 р. Какую сумму денег составила премия?

Выразим в процентах количество денег, оставшихся от премии:
100% — (5% + 10% + 7%) = 100% — 22% = 78%.

78 % выражаются дробью 0,78. Вычислим целое по его проценту:
11700 : 0,78 = 1170000 : 78 = 15000(р)

Задача 5. Выражение величины частью целого.

Оля истратила треть имевшейся у нее суммы денег, а потом еще 100 р. В итоге она истратила половину суммы. Сколько денег было у Оли первоначально?

Сначала узнаем, какую часть всей суммы составляет 100 р.:

Теперь мы знаем, что 100 р. – это всей суммы. Чтобы ответить на вопрос задачи, нужно найти целое по его части, т.е. 100 разделить на . В данном случае можно попросту 100 р. умножить на 6. Получим, что у Оли было 600 р.

Задача 6. Выражение величины процентами целого.

Среди участников кросса 35% студенты, остальные – старшеклассники, причем их на 252 человека больше, чем студентов. Сколько спортсменов участвует в кроссе?

Старшеклассники составляют 100% — 35% = 65% участников кросса. Найдем, на сколько процентов больше старшеклассников, чем студентов: 65% — 35% = 30%. Эти 30% составляют 252 человека.

30% выражаются десятичной дробью 0,3. Вычислим целое по его проценту: 252 : 0,3 = 2520 : 3 = 840 (чел.).

Задача 7. Часть от части целого.

Перед поездкой бак автомобиля был заполнен на . Во время поездки была истрачена четверть имевшегося запаса бензина. Какая часть бака заполнена бензином к концу поездки?

По условию истрачена четверть от бака, значит, осталось от бака:

Ответ:

Задача 8. Проценты от процентов целого.

Четверть тиража новой газеты раскуплена в первый же день ее выпуска, причем 64% этой газеты продано в газетных киосках. Сколько процентов всего тиража продано в газетных киосках?

Четверть тиража новой газеты составляют его 25%. Найдем 64% от 25%:
0,25 т.е. 16%.

Задача 9. Оставшаяся часть целого.

Ученик закрасил круга синим цветов и оставшейся части – желтым цветом. Какая часть круга осталась незакрашенной?

После закрашивания синим цветом остались незакрашенными 1 – круга. Найдем от : Сложим закрашенные части: Значит, незакрашенными остались: 1

После закрашивания синим цветом остались незакрашенными круга. После закрашивания желтым цветом остались незакрашенными 1 – оставшейся части. Найдем от : .

Задача 10. Оставшиеся проценты целого.

Автомобиль прошел 40% пути, а затем 30% оставшегося расстояния. Сколько процентов всего пути ему осталось пройти?

После того как автомобиль прошел 40% пути, ему осталось еще пройти:
100% – 40% = 60% пути. Найдем 30%, т.е. 0,3 от 60%: 60 %. Значит, всего автомобиль прошел 40% + 18% = 58% пути и ему осталось пройти
100% – 58%=42% пути.

После того как автомобиль прошел 40% пути, ему осталось еще пройти 60% пути. А когда он пройдет 30% оставшегося расстояния, то ему останется пройти 70% оставшегося расстояния. Найдем 70%, т.е. 0,7 от 60:
60 %.

Задача 11. Сложение процентов.

В школе 16% девочек и 28% мальчиков занимаются в спортивных секциях. Сколько всего процентов школьников занимаются в спортивных секциях, если число мальчиков и число девочек в школе одинаково?

Число мальчиков и девочек в школе одинаково, а значит, в школе 50% мальчиков и 50% девочек. Найдем 16%, т.е. 0,16 от 50%: 50 %. Найдем 28%, т.е. 0,28 от 50%: 50 %. Сложим проценты: 8% + 14% = 22% — столько процентов составляют учащиеся школы, которые занимаются в спортивных секциях.

Задача 12. Уменьшение (увеличение) на несколько процентов.

На весенней распродаже в одном магазине товар уценили на 40%, а через неделю еще на 5%. На ярмарке тот же товар уценили сразу на 45%. Где выгоднее покупателю купить эту вещь?

Товар выгоднее купить там, где он дешевле. В магазине после двух уценок цена товара составит 0,6 его первоначальной цены, а на ярмарке – 0,55 первоначальной цены. Так как 0,57 0,55, то правильный ответ: на ярмарке.

Задача 13. Сравнение величин.

Во время распродажи кресло, стоившее 3000 р., продавали за 2400 р. На сколько процентов была снижена цена кресла на распродаже?

На сколько рублей новая цена меньше старой? На 3000 – 2400 = 600 рублей. На какую часть была снижена цена кресла? На , что составляет 20%

Какую часть новая цена составляет от старой? , т.е. 80%. А это значит, что цена снижена на 100% – 80% = 20%.

Ответ: цена снижена на 20%.

Задача 14. Отношение процентов.

Отношение числа девочек в школе к числу мальчиков равно 4 : 5. Какую часть составляют девочки от числа всех учащихся школы? А мальчики? Выразите ответ в процентах.

Если отношение числа девочек в школе к числу мальчиков равно 4 : 5, то число девочек составляет 4 части, а мальчиков 5 частей, а число всех учащихся школы – 9 таких же частей. Поэтому девочки от числа всех учащихся школы составляют , а мальчики .

Ответ: примерно 44% и 56%.

Задача 15. «Потери», выраженные в процентах.

При сушке яблоки теряют 75% своей массы, т.е. ту часть влаги, которая из нее выпаривается. Сушеные яблоки содержат 20% влаги. Какова влажность свежих яблок?

Масса сушеных яблок составляет 100% – 75% = 25% массы свежих яблок, и она содержит 0,25 т.е. 5% влаги. Таким образом, влажность свежих яблок 75% + 5% = 80%.

Задача 16. Концентрация раствора.

Сколько граммов воды надо добавить к 180 г сиропа, содержащего 25% сахара, чтобы получить сироп, содержащий 20% сахара?

Определим, сколько сахара в данной массе сиропа: 180 Теперь найдем, сколько граммов 20-процентного сиропа получится, если взять 45 г сахара: 45 : 0,2 = 225 (г). Таким образом, в данную массу сиропа надо добавить
225 – 180 = 45 (г) воды.

источник

Задача 1. Вода составляет 76% картофеля. Сколько килограммов воды в 35 кг картофеля?

Решение. Вода составляет 76% от 35 кг. По правилу нахождения процентов от данного числа (чтобы найти проценты от данного числа нужно обратить проценты в десятичную или обыкновенную дробь, а затем умножить данное число на эту дробь) получаем 0,76∙35=26,6 кг.

Ответ : в 35 кг картофеля содержится 26,6 кг воды.

Задача 2. В классе 28 учеников. 75% из них занимаются спортом. Сколько учеников в классе занимаются спортом?

Решение. Так как 75%=0,75, то умножая число 28 на дробь 0,75 получаем: 0,75·28=21.

Получается, что 21 человек посещает спортивные кружки.

Ответ : 21 ученик в классе занимается спортом.

Задача 3. В классе 20 человек. Контрольную работу по математике 25% учащихся написали на «5», 35 % написали на «4», 10% всех учащихся получили «2». Сколько пятерок, четверок, троек и двоек получил класс?

Решение. Количество пятерок составляет 25% от 20. По правилу нахождения процентов от данного числа это 0,25∙20=5 учащихся. Четверки получили 35% от 20. Это 0,35∙20=7 учащихся. Двоек 10%. Это 1/10 часть от 20 учащихся, т.е. 2 человека. Остальные учащиеся получили оценку «3». Их 20-5-7-2=6 человек.

Ответ: оценку «5» получило 5 учащихся; оценку «4» получили 7 учащихся; оценку «3» получило 6 учащихся и оценку «2» получили 2 ученика.

Задача 4. В школьной библиотеке 5780 учебников, что составляет 85% всех книг, имеющихся в библиотеке. Сколько всего книг в школьной библиотеке?

Решение. Потребуется найти число по его процентам. Применяем правило нахождения числа по его процентам (чтобы найти число по его процентам нужно обратить проценты в десятичную дробь, а затем разделить данное число на эту дробь). 1) 85%=0,85; 2) 5780:0,85=578000:85=6800 книг.

Ответ: всего в библиотеке 6800 книг.

Задача 5. Токарю нужно было сделать 120 деталей, но он перевыполнил план на 10%. Сколько деталей изготовил токарь?

Решение. 10% от 120 деталей – это одна десятая часть от 120, т.е. это 12 деталей. Токарь изготовил 120+12=132 детали.

Ответ: 132 детали изготовил токарь.

Задача 6. Фирма платит рекламным агентам 5% от стоимости заказа. На какую сумму нужно выполнить заказ, чтобы заработать 2000 рублей?

Решение. 2000 рублей – это 5% от заказа. Число (все его 100%) по его процентам мы найдем по правилу нахождения числа по его процентам. Обращаем 5% в десятичную дробь и делим 2000 на эту дробь. 1) 5%=0,05; 2) 2000:0,05=200000:5=40000.

Ответ: заказ должен быть на сумму 40000 рублей.

Задача 7. После уценки на 10% цена холодильника стала 11430 рублей. Какова была цена холодильника до уценки?

Решение. Имеем: 11430 рублей – это 90% от начальной цены холодильника. Находим число по его процентам. 1) 90%=0,9; 2) 11430:0,9=114300:9=12700 рублей.

Ответ: до уценки холодильник стоил 12700 рублей.

Задача 8. Сколько процентов число 36 составляет от 48?

Решение. По соответствующему правилу: чтобы найти, сколько процентов составляет первое число от второго нужно первое число разделить на второе и результат умножить на 100% — записываем:

Ответ: 75% составляет число 36 от числа 48.

Задача 9. За 1 час станок-автомат изготовлял 240 деталей. После реконструкции этого станка он стал изготовлять в час 288 таких же деталей. На сколько процентов повысилась производительность станка?

Читайте также:  Как научиться стоять на руках в домашних условиях быстро

Решение. Производительность станка повысилась на 288-240=48 деталей в час. Нужно узнать, сколько процентов от 240 деталей составляют 48 деталей. Для того чтобы узнать, сколько процентов число 48 составляет от числа 240 нужно число 48 разделить на 240 и результат умножить на 100%.

Ответ : производительность станка повысилась на 20%.

Математика. 5 класс. Тест 8. Вариант 2.

1. В школьной библиотеке 3400 книг, из них 2890 учебников. Сколько процентов всех книг составляют учебники?

А) 70%; B) 75%; C) 90%; D) 80%; E) 85%.

2. Автотуристы в первый день проехали 36% всего пути, во второй день 39% всего пути, а в третий день — оставшиеся 200 км. Каков весь путь?

А) 700 км; В) 600 км; С) 800 км; D) 1000 км; Е) 900 км.

3. . на которые точка разбивает прямую, называются дополнительными лучами.

А) отрезки; В) прямые; С) фигуры; D) лучи; Е) стороны.

4. Найти градусные меры / ABC и / MNK.

А) / ABC=135°, / MNK=45°;

B) / ABC=120°, / MNK=45°;

C) / ABC=105°, / MNK=135°;

D) / ABC=45°, / MNK=135°;

E) / ABC=60°, / MNK=135°.

5. Угол АОВ равен 87°. Внутри этого угла проведен луч ОС. Найдите градусную меру угла АОС, если / ВОС=61°.

А) 36°; В) 31°; С) 26°; D) 16°; E) 158°.

6. Решить задачу, составив уравнение. Угол МОК равен 120°. Внутри этого угла проведен луч OD. Угол MOD больше угла DOK на 50°. Сколько градусов содержит угол DOK?

A) 35°; B) 85°; C) 45°; D) 60°; E) 70°.

7. . угол равен половине развернутого угла.

А) тупой; В) острый; С) любой; D) полный; Е) прямой.

8. Сколько градусов содержит угол, если он составляет 3/5 развернутого угла?

А) 45°; В) 72°; С) 135°; D) 120°; Е) 108°.

9. Сколько градусов составляет угол, если он равен 7/15 прямого угла?

А) 54°; В) 36°; С) 60°; D) 42°; Е) 66°.

10. Определить по круговой диаграмме, изображенной на рисунке 1, процентное содержание гвоздик в цветнике. Результат округлить до целых.

11. Используя круговую диаграмму, приведенную на рисунке 2, найти процентное количество корма для животных, получающегося в результате помола пшеницы. Округлить до целых.

12. Используя круговую диаграмму, приведенную на рисунке 3, найти в процентах норму пищи, рекомендуемую к употреблению за завтраком. Округлить до целых.

Ответы к тестам Вы найдете на странице «Ответы« .

Нужно учиться решать задачи на проценты, так как тема «Проценты» уже никогда не закончится! Приобретайте лучшее наглядное пособие «Как решать задачи на проценты». В электронной книге не только правила и текстовые объяснения, но и обучающие видео (круговым диаграммам в книге также нашлось место!) Посмотреть подробнее можно здесь!

Тема «Проценты» станет понятнее с книгой «Как решать задачи на проценты»! Узнать подробнее здесь!

  • Процентом называется одна сотая часть.
  • Чтобы выразить проценты дробью или натуральным числом, нужно число процентов разделить на 100%. (4%=0,04; 32%=0,32).
  • Чтобы выразить число в процентах, нужно его умножить на 100%. (0,65=0,65·100%=65%; 1,5=1,5·100%=150%).
  • Чтобы найти проценты от числа, нужно выразить проценты обыкновенной или десятичной дробью и умножить полученную дробь на данное число.
  • Чтобы найти число по его процентам, нужно выразить проценты обыкновенной или десятичной дробью и разделить на эту дробь данное число.
  • Чтобы найти, сколько процентов составляет первое число от второго, нужно разделить первое число на второе и результат умножить на 100%.

Пример 1. Выразить проценты дробью или натуральным числом: 130%, 65%, 4%, 200%.

  1. 130%=130%:100%=130:100=1,3;
  2. 65%=65%:100%=65:100=0,65;
  3. 4%=4%:100%=4:100=0,04;
  4. 200%=200%:100%=200:100=2.

Пример 2. Записать следующие числа в виде процентов: 1; 1,5; 0,4; 0,03.

  1. 1=1·100%=100%;
  2. 1,5=1,5·100%=150%;
  3. 0,4=0,4·100%=40%;
  4. 0,03=0,03·100%=3%.

Пример 3. Найти 15% от числа 400.

Пример 4. Найти число, если 18% его равны 900.

Пример 5. Определить, сколько процентов составляет число 320 от числа 1600.

источник

Продолжаем изучать элементарные задачи по математике. Данный урок посвящен задачам на дроби.

Прежде чем решать задачи на дроби, необходимо досконально изучить все темы, касающиеся дробей. Ниже приведен список уроков, которые можно повторить.

Каждая задача, приведенная в данном уроке, относится к категории элементарных. Если какая-то задача непонятна, это указывает на то, что предыдущий материал усвоен недостаточно хорошо.

Задача 1. В классе школьников составляют отличники. Какую часть составляют остальные? Сделать графическое описание задачи. Рисунок может быть любым.

Решение

Если составляют отличники, то составляют остальные

Задача 2. В классе школьников составляют отличники, составляют хорошисты, составляют троечники. Сделать графическое описание задачи. Рисунок может быть любым.

Задача 3. В классе 24 школьника. школьников составляют отличники, составляют хорошисты, составляют троечники. Сколько в классе отличников, хорошистов и троечников?

Решение

24 : 6 × 1 = 4 × 1 = 4 (отличника)

24 : 6 × 3 = 4 × 3 = 12 (хорошистов)

24 : 6 × 2 = 4 × 2 = 8 (троечников)

Проверка

4 + 12 + 8 = 24 (школьника)

Задача 4. В классе школьников составляют отличники, составляют хорошисты. Какую часть составляют троечники?

Решение

Школьники разделены на 6 частей. На одну из частей приходятся отличники, на три части — хорошисты. Нетрудно догадаться, что на остальные две части приходятся троечники. Значит школьников составляют троечники

Не приводя рисунков можно сложить дроби и , и полученный результат вычесть из дроби , которая выражает всю часть школьников. Другими словами, сложить отличников и хорошистов, затем вычесть этих отличников и хорошистов из общего количества школьников

Задача 5. В классе 16 школьников. Из них составляют отличники, составляют хорошисты. Сколько отличников и хорошистов в классе? Сделать графическое описание задачи. Рисунок может быть любым.

Решение

16 : 4 × 1 = 4 × 1 = 4 (отличника)

16 : 16 × 12 = 1 × 12 = 12 (хорошистов)

Задача 6. В классе 16 школьников. Из них составляют отличники, составляют хорошисты, составляют троечники. Сколько отличников, хорошистов и троечников в классе? Сделать графическое описание задачи. Рисунок может быть любым.

Решение

16 : 8 × 1 = 2 × 1 = 2 (отличника)

16 : 16 × 10 = 1 × 10 = 10 (хорошистов)

Задача 7. Из зерен пшеницы производят полтавскую крупу, масса которой составляет массы зерна пшеницы, а остальное составляют кормовые отходы. Сколько можно получить полтавской крупы и кормовых отходов из 500 центнеров пшеницы

Решение

Найдем от 500 центнеров:

Теперь найдем массу кормовых отходов. Для этого вычтем из 500 ц массу полтавской крупы:

Значит из 500 центнеров зерен пшеницы можно получить 320 центнеров полтавской крупы и 180 центнеров кормовых отходов.

Задача 8. Килограмм сахара стоит 88 рублей. Сколько стоит кг сахара? кг? кг? кг?

Решение

1) кг это половина одного килограмма. Если один килограмм стоит 88 рублей, то половина килограмма будет стоит половину от 88, то есть 44 рубля. Если найти половину от 88 рублей, мы получим 44 рубля

2) кг это четверть килограмма. Если один килограмм стоит 88 рублей, то четверть килограмма будет стоит четверти от 88 рублей, то есть 22 рубля. Если найти от 88 рублей, мы получим 22 рубля

3) Дробь означает, что килограмм разделен на восемь частей, и оттуда взято три части. Если один килограмм стоит 88 рублей, то стоимость трех восьми килограмм будут стоить от 88 рублей. Если найти от 88 рублей, мы получим 33 рубля.

4) Дробь означает, что килограмм разделен на восемь частей, и оттуда взято одиннадцать частей. Но невозможно взять одиннадцать частей, если их только восемь. Мы имеем дело с неправильной дробью. Сначала выделим в ней целую часть:

Одиннадцать восьмых это один целый килограмм и килограмма. Теперь мы можем по отдельности найти стоимость одного целого килограмма и стоимость трёх восьмых килограммов. Один килограмм, как было указано выше стоит 88 рублей. Стоимость кг мы также находили и получили 33 рубля. Значит кг сахара будет стоит 88+33 рубля, то есть 121 рубль.

Стоимость можно найти не выделяя целой части. Для этого достаточно найти от 88.

Но выделив целую часть можно хорошо понять, как сформировалась цена на кг сахара.

Задача 9. Финики содержат сахара и минеральных солей. Сколько граммов каждого из веществ содержится в 4 кг фиников?

Решение

Узнаем сколько граммов сахара содержится в одном килограмме фиников. Один килограмм это тысяча грамм. Найдем от 1000 грамм:

В одном килограмме фиников содержится 720 грамм сахара. Чтобы узнать сколько грамм сахара содержится в четырех килограммах, нужно 720 умножить на 4

Теперь узнаем сколько минеральных солей содержится в 4 килограммах фиников. Но сначала узнаем сколько минеральных солей содержится в одном килограмме. Один килограмм это тысяча грамм. Найдем от 1000 грамм:

В одном килограмме фиников содержится 15 грамм минеральных солей. Чтобы узнать сколько грамм минеральных солей содержится в четырех килограммах, нужно 15 умножить на 4

Значит в 4 кг фиников содержится 2880 грамм сахара и 60 грамм минеральных солей.

Решение для данной задачи можно записать значительно короче, двумя выражениями:

Суть в том, что от 4 килограмм нашли и полученные 2,88 перевели в граммы, умножив на 1000. Тоже самое сделали и для минеральных солей — от 4 кг нашли и получившиеся килограммы перевели в граммы, умножив на 1000. Обратите также внимание на то, что дробь от числа найдена упрощенным способом — прямым умножением числа на дробь.

Задача 10. Поезд прошел 840 км, что составляет его пути. Какое расстояние ему осталось пройти? Каково расстояние всего пути?

Решение

В задаче говорится, что 840 км это от его пути. Знаменатель дроби указывает на то, что весь путь разделен на семь равных частей, а числитель указывает на то, что четыре части этого пути уже пройдено и составляют 840 км. Поэтому, разделив 840 км на 4, мы узнаем сколько километров приходится на одну часть:

А поскольку весь путь состоит из семи частей, то расстояние всего пути можно найти, умножив 210 на 7:

Теперь ответим на второй вопрос задачи — какое расстояние осталось пройти поезду? Если длина пути 1470 км, а пройдено 840, то оставшийся путь равен 1470−840, то есть 630

Задача 11. Одна из групп, покорившая горную вершину Эверест, состояла из спортсменов, проводников и носильщиков. Спортсменов в группе было 25, число проводников составляло числа спортсменов, а число спортсменов и проводников вместе лишь 9/140 числа носильщиков. Сколько было носильщиков в этой экспедиции?

Решение

Спортсменов группе 25. Проводников составляет числа спортсменов. Найдем от 25 и узнаем сколько в группе проводников:

Спортсменов и проводников вместе — 45 человек. Это число составляет от числа носильщиков. Зная что от числа носильщиков это 45 человек, мы можем найти общее число носильщиков. Для этого найдем число по дроби:

45 : 9 × 140 = 5 × 140 = 700

Задача 12. В школу привезли 900 новых учебников, из них учебники по математике составляли всех книг, учебники по русскому языку всех книг, а остальные книги были по литературе. Сколько привезли книг по литературе

Узнаем сколько составляют учебники по математике:

900 : 25 × 8 = 288 (книг по математике)

Узнаем сколько учебников по русскому языку:

900 : 100 × 33 = 297 (книг по русскому языку)

Узнаем сколько учебников по литературе. Для этого из общего числа книг вычтем учебники по математике и по русскому:

900 – (288+297) = 900 – 585 = 315

Проверка

Задача 13. В первый день продали , а во второй день поступившего в магазин винограда. Какую часть винограда продали за два дня?

Решение

За два дня продали винограда. Эта часть получается путем сложения дробей и

Можно представить поступивший в магазин виноград в виде шести гроздей. Тогда винограда это две грозди, винограда — три грозди, а винограда это пять гроздей из шести, проданные за два дня. Ну и нетрудно увидеть, что осталась одна гроздь, выраженная дробь (одна гроздь из шести)

Задача 14. Вера в первый день прочитала книги, а во второй день на меньше. Какую часть книги прочитала Вера во второй день? Успела ли она прочитать книгу за два дня?

Решение

Определим часть книги, прочитанной во второй день. Сказано, что во второй день прочитано на меньше, чем в первый день. Поэтому из нужно вычесть

Во второй день Вера прочитала книги. Теперь ответим на второй вопрос задачи — успела ли Вера прочитать книгу за два дня? Сложим то, что Вера прочитала в первый и во второй день:

За два дня Вера прочитала книги, но осталось ещё книги. Значит Вера не успела прочитать всю книгу за два дня.

Сделаем проверку. Предположим что книга, которую читала Вера, имела 180 страниц. В первый день она прочла книги. Найдем от 180 страниц

180 : 9 × 5 = 100 (страниц)

Во второй день Вера прочитала на меньше, чем в первый. Найдем от 180 страниц, и вычтем полученный результат из 100 листов, прочитанных в первый день

180 : 6 × 1 = 30 × 1 = 30 (страниц)

100 − 30 = 70 (страниц во второй день)

Проверим, являются ли 70 страниц частью книги:

180 : 18 × 7 = 10 × 7 = 70 (страниц)

Теперь ответим на второй вопрос задачи — успела ли Вера прочитать все 180 страниц за два дня. Ответ — не успела, поскольку за два дня она прочла только 170 страниц

100 + 70 = 170 (страниц)

Осталось прочесть еще 10 страниц. В задаче в роли остатка у нас была дробь . Проверим являются ли 10 страниц частью книги?

180 : 18 × 1 = 10 × 1 = 10 (страниц)

Задача 15. В одном пакете кг, а в другом на кг меньше. Сколько килограммов конфет в двух пакетах вместе?

Решение

Определим массу второго пакета. Она на кг меньше, чем масса первого пакета. Поэтому из массы первого пакета вычтем массу второго:

Масса второго пакета кг. Определим массу обоих пакетов. Сложим массу первого и массу второго:

Масса обоих пакетов кг. А килограмма это 800 граммов. Можно решать такую задачу, работая с дробями, складывая и вычитая их. Также можно сначала найти число по данным в задаче дробям и приступить к решению. Так килограмма это 500 граммов, а кг это 200 граммов

1000 : 2 × 1 = 500 × 1 = 500 г

1000 : 5 × 1 = 200 × 1 = 200 г

Во втором пакете на 200 граммов меньше, поэтому чтобы определить массу второго пакета, нужно из 500 г вычесть 200 г

Ну и напоследок сложить массы обоих пакетов:

Задача 16. Туристы прошли путь от турбазы до озера за 4 дня. В первый день они прошли всего пути, во второй оставшегося пути, а в третий и четвертый дни проходили по 12 км. Чему равна длина всего пути от турбазы до озера?

Решение

В задаче сказано, что во второй день туристы прошли оставшегося пути . Дробь означает, что оставшийся путь разделен на 7 равных частей, из них туристы прошли три части, но осталось пройти остальные . На эти приходится то расстояние, которое туристы прошли в третий и четвертый день, то есть 24 км (по 12 км в каждом дне). Нарисуем наглядную схему, иллюстрирующую второй, третий и четвертый дни:

Читайте также:  Как повысить гемоглобин у ребенка 6 лет

В третий и четвертый день туристы прошли 24 км и это составляет от пути, пройденного во второй, третий и четвертый дни. Зная, что составляют 24 км, мы можем найти весь путь, пройденный во второй, третий и четвертый день:

24 : 4 × 7 = 6 × 7 = 42 км

Во второй, третий и четвертый день туристы прошли 42 км. Теперь найдем от этого пути. Так мы узнаем сколько километров туристы прошли во второй день:

42 : 7 × 3 = 6 × 3 = 18 км

Теперь возвращаемся к началу задачи. Сказано, что в первый день туристы прошли всего пути. Весь путь разделен на четыре части, и на первую часть приходится путь, пройденный в первый день. А путь, который приходится на остальные три части, мы уже нашли — это 42 километра, пройденные во второй, третий и четвертый дни. Нарисуем наглядную схему, иллюстрирующую первый и остальные три дня:

Зная, что пути составляют 42 километра, мы можем найти длину всего пути:

Значит длина пути от турбазы до озера составляет 56 километров. Сделаем проверку. Для этого сложим все пути, пройденные туристами в каждый из четырех дней.

Сначала найдем путь пройденный в первый день:

56 : 4 × 1 = 14 (в первый день)

Задача из арифметики известного среднеазиатского математика Мухаммеда ибн-Мусы ал-Хорезми (IX век н. э.)

«Найти число, зная, что если отнять от него одну треть и одну четверть, то получится 10»

Изобразим число, которое мы хотим найти, в виде отрезка, разделенного на три части. В первой части отрезка отметим треть, во второй — четверть, оставшаяся третья часть будет изображать число 10.

Сложим треть и четверть:

Теперь изобразим отрезок, разделенный на 12 частей. Отметим на нем дробь , остальные пять частей пойдут на число 10:

Зная, что пять двенадцатых числа составляют число 10, мы можем найти всё число:

10 : 5 × 12 = 2 × 12 = 24

Мы нашли всё число — оно равно 24.

Эту задачу можно решить не приводя рисунков. Для этого, сначала нужно сложить треть и четверть. Затем из единицы, которая играет роль неизвестного числа, вычесть результат сложения трети и четверти. Затем по полученной дроби определить всё число:

Задача 17. Семья, состоящая из четырех человек, в месяц зарабатывает 80 тысяч рублей. Бюджет распланирован следующим образом: на еду, на коммунальные услуги, на Интернет и ТВ, на лечение и походы по врачам, на пожертвование в детский дом, на проживание в съемной квартире, в копилку. Сколько денег выделено на еду, коммунальные услуги, на Интернет и ТВ, на лечение и походы по врачам, пожертвование на детский дом, на проживание в съемной квартире, и на копилку?

Решение

80 : 40 × 7 = 14 (тыс. на еду)

80 : 20 × 1 = 4 × 1 = 4 тыс. (на коммунальные услуги)

80 : 20 × 1 = 4 × 1 = 4 тыс. (на Интернет и ТВ)

80 : 20 × 3 = 4 × 3 = 12 тыс. (на лечение и походы по врачам)

80 : 10 × 1 = 8 × 1 = 8 тыс. (на пожертвование в детский дом)

80 : 20 × 3 = 4 × 3 = 12 тыс. (на проживание в съемной квартире)

80 : 40 × 13 = 2 × 13 = 26 тыс. (в копилку)

Проверка

14 + 4 + 4 + 12 + 8 + 12 + 26 = 80

Задача 18. Туристы во время похода за первый час прошли км, а за второй на км больше. Сколько километров прошли туристы за два часа?

Решение

Найдем числа по дробям. это три целых километра и семь десятых километра, а семь десятых километра это 700 метров:

это один целый километр и одна пятая километра, а одна пятая километра это 200 метров

Определим длину пути, пройденного туристами за второй час. Для этого к 3 км 700 м нужно прибавить 1 км 200 м

3 км 700 м + 1 км 200 м = 3700м + 1200м = 4900м = 4 км 900 м

Определим длину пути, пройденного туристами за два часа:

3 км 700 м + 4 км 900 = 3700м + 4900м = 8600м = 8 км 600 м

Значит за два часа туристы прошли 8 километров и еще 600 метров. Решим эту задачу с помощью дробей. Так её можно значительно укоротить

Получили ответ километра. Это восемь целых километров и шесть десятых километра, а шесть десятых километра это шестьсот метров

Задача 19. Геологи прошли долину, расположенную между горами, за три дня. В первый день они прошли , во второй всего пути и в третий оставшиеся 28 км. Вычислить длину пути, проходящего по долине.

Решение

Изобразим путь в виде отрезка, разделенного на три части. В первой части отметим пути, во второй части пути, в третьей части оставшиеся 28 километров:

Сложим части пути, пройденные в первый и во второй день:

За первый и второй дни геологи прошли всего пути. На остальные пути приходятся 28 километров, пройденные геологами в третий день. Зная, что 28 километров это всего пути, мы можем найти длину пути, проходящего по долине:

28 : 4 × 9 = 7 × 9 = 63 км

Проверка

Задача 20. Для приготовления крема использовали сливки, сметану и сахарную пудру. Сметану и сливки составляют 844,76 кг, а сахарная пудра и сливки 739,1 кг. Сколько в отдельности сливок, сметаны и сахарной пудры содержится в 1020,85 кг крема?

Решение

сметана и сливки — 844,76 кг
сахарная пудра и сливки — 739,1 кг

Вытащим из 1020,85 кг крема сметану и сливки (844,76 кг). Так мы найдем массу сахарной пудры:

1020,85 кг — 844,76 кг = 176,09 (кг сахарной пудры)

Вытащим из сахарной пудры и сливок сахарную пудру (176,09 кг). Так мы найдем массу сливок:

739,1 кг — 176,09 кг = 563,01 (кг сливок)

Вытащим сливки из сметаны и сливок. Так мы найдем массу сметаны:

844,76 кг — 563,01 кг = 281,75 (кг сметаны)

176,09 (кг сахарная пудра)

Проверка

176,09 кг + 563,01 кг + 281,75 кг = 1020,85 кг

1020,85 кг = 1020,85 кг

Задача 21. Масса бидона, заполненного молоком равна 34 кг. Масса бидона, заполненного наполовину, равна 17,75 кг. Какова масса пустого бидона?

Решение

Вычтем из массы бидона, заполненного молоком, массу бидона заполненного наполовину. Так мы получим массу содержимого бидона, заполненного наполовину, но уже без учета массы бидона:

34 кг − 17,75 кг = 16,25 кг

16,25 это масса содержимого бидона заполненного наполовину. Умножим эту массу на 2, получим массу бидона заполненного полностью:

32,5 кг это масса содержимого бидона. Чтобы вычислить массу пустого бидона, нужно из 34 кг вычесть массу его содержимого, то есть 32,5 кг

34 кг − 32,5 кг = 1,5 кг

Ответ: масса пустого бидона составляет 1,5 кг.

Задача 22. Сливки составляют 0,1 массы молока, а сливочное масло составляет 0,3 массы сливок. Сколько сливочного масла можно получить из суточного надоя коровы, равного 15 кг молока?

Решение

Определим сколько килограмм сливок можно получить с 15 кг молока. Для этого найдем 0,1 часть от 15 кг.

15 × 0,1 = 1,5 (кг сливок)

Теперь определим сколько сливочного масла можно получить с 1,5 кг сливок. Для этого найдем 0,3 часть от 1,5 кг

1,5 кг × 0,3 = 0,45 (кг сливочного масла)

Ответ: из 15 кг молока можно получить 0,45 кг сливочного масла.

Задача 23. 100 кг клея для линолеума содержат 55 кг асфальта, 15 кг канифоли, 5 кг олифы и 25 кг бензина. Какую часть этого клея образует каждая из его составляющих?

Решение

Представим, что 100 кг клея как 100 частей. Тогда на 55 частей приходится асфальт, на 15 частей — канифоль, на 5 частей — олифа, на 25 частей — бензин. Запишем эти части в виде дробей, и по возможности сократим получающиеся дроби:

Ответ: клея составляет асфальт, составляет канифоль, составляет олифа, составляет бензин.

Решение

Ответ: масса двух пакетов вместе составляет 1 кг 300 г

Решение

Второй способ

Ответ: театральное представление длилось 2 часа 10 минут.

Решение

Определим часть пути, пройденного лыжником за два часа движения. Для этого сложим дроби, выражающие пути пройденные за первый и второй час:

Определим часть пути, пройденного лыжником за третий час. Для этого из всех частей вычтем часть пути, пройденного за первый и второй час движения:

Ответ: в третий час лыжник прошел всего расстояния.

Решение

Определим часть школьников, которые участвовали в футболе, баскетболе и в прыжках:

Определим часть школьников, которые участвовали в беге:

Узнаем на какую часть бегунов больше (или меньше) чем футболистов. Для начала сравним дроби

Требовалось узнать на какую часть бегунов больше (или меньше) чем футболистов. Мы выяснили, что бегунов меньше, чем футболистов. Выясним на какую часть их меньше:

Бегунов меньше, чем футболистов на часть.

Теперь узнаем на какую часть бегунов больше (или меньше) чем баскетболистов. Для начала сравним дроби

Требовалось узнать на какую часть бегунов больше (или меньше) чем баскетболистов. Мы выяснили, что бегунов больше, чем баскетболистов. Выясним на какую часть их больше:

Бегунов больше, чем баскетболистов на часть.

Ответ: бегунов было на часть меньше, чем футболистов и на часть больше, чем баскетболистов.

Задача 5. На выставке художественных работ представлена живопись, скульптура и графика. всех работ составляет скульптура, – живопись, оставшуюся часть – графика. Какую часть всех работ составляет графика?

Решение

Сложим дроби, выражающие скульптуру и живопись:

Определим какую часть всех работ составляет графика:

Ответ: всех работ составляет графика.

Задача 6. Рабочие отремонтировали дорогу длиной 820 м за три дня. Во вторник они отремонтировали этой дороги, а в среду оставшейся части. Сколько метров дороги отремонтировали рабочие в четверг?

Решение

Определим длину дороги, отремонтированной во вторник:

Определим длину дороги, отремонтированной в среду. Известно, что в этот день рабочие отремонтировали оставшейся дороги. Оставшаяся дорога это 820−328, то есть 492

Определим длину дороги, отремонтированной в четверг. Для этого вычтем из 820 длины дорог, отремонтированных во вторник и в среду:

820 − (328 + 328) = 820 − 656 = 164 м

Ответ: в четверг рабочие отремонтировали 164 метра дороги.

Задача 7. В книге три рассказа. Наташа прочла первый рассказ за ч, на чтение второго рассказа она потратила на ч больше, а чтение третьего рассказа заняло на ч меньше, чем чтение первого и второго рассказов вместе. Сколько времени ушло у Наташи на чтение всей книги?

Решение

Определим время за которое Наташа прочитала первый рассказ. Она прочила его за треть часа. Треть часа это 20 минут

Определим время за которое Наташа прочитала второй рассказ. Она прочила его на ч больше. часа это 10 минут. Прибавим к 20 минутам 10 минут, получим время чтения второго рассказа:

Определим время за которое Наташа прочитала третий рассказ. Она прочитала его на ч меньше, чем чтение первого и второго рассказов вместе. часа это 35 минут. Вычтем 35 из времени, затраченного на чтение первого и второго рассказа вместе (50 м)

Определим сколько времени ушло у Наташи на чтение всей книги:

20 + 30 + 15 = 65 минут = 1 ч 5 минут

На чтение всей книги у Наташи ушел 1 час и 5 минут. Решим эту задачу с помощью дробей. Так ее можно значительно укоротить:

это один целый час и часа, а одну двенадцатую часа составляют 5 минут.

Ответ: на чтение всей книги у Наташи ушло

Задача 8. Из одной тонны хлопка-сырца можно изготовить 3400 м ткани, 1,05 ц пищевого масла и 0,225 т жмыха. Сколько метров ткани, пищевого масла и жмыха можно получить из 32,4 ц хлопка-сырца?

Решение

Переведем 32,4 ц в тонны. Одна тонна составляет 10 центнеров. Чтобы узнать сколько таких десять центнеров (имеется ввиду тонн) в 32,4 центнерах, нужно 32,4 разделить на 10

Определим сколько метров ткани можно получить с 3,24 тонн хлопка-сырца. С одной тонны, как указано в задаче, получается 3400 метров ткани. А с 3,24 тонн будет получено в 3,24 раза больше ткани

3400 × 3,24 = 11016 метров ткани.

Определим сколько пищевого масла можно получить с 3,24 тонн хлопка-сырца. С одной тонны, как указано в задаче, получается 1,05 ц пищевого масла. А с 3,24 тонн будет получено в 3,24 раза больше масла

1,05 × 3,24 = 3,402 ц пищевого масла

Определим сколько жмыха можно получить с 3,24 тонн хлопка-сырца. С одной тонны, как указано в задаче, получается 0,225 т жмыха. А с 3,24 тонн будет получено в 3,24 раза больше жмыха

0,225 × 3,24 = 0,729 т жмыха

Ответ: из 32,4 ц хлопка сырца можно получить 11016 метров ткани, 3,402 ц пищевого масла и 0,729 т жмыха.

Решение

Зная, что 0,2 всего пути составляют 12 км, мы можем найти весь путь. Чтобы найти неизвестное число по десятичной дроби, нужно известное число разделить на десятичную дробь

Ответ: Туристы прошли 60 км.

Решение

Зная, что 0,7 книги составляют 56 страниц, мы можем узнать сколько всего страниц в книге. Чтобы найти неизвестное число по десятичной дроби, нужно известное число разделить на десятичную дробь

56 : 0,7 = 80 страниц всего

Узнаем сколько осталось прочитать

80 − 56 = 24 страниц осталось прочитать

Ответ: в книге 80 страниц. Прочитать осталось еще 24 страницы.

Решение

Разделим жилых домов на три части:

Теперь на треть многоэтажных домов приходится всех зданий. Изначально все здания были разделены на три равные части. Теперь они разделены на девять равных частей. Жилые дома, которые ранее выражались дробью , теперь выражаются дробью

Чтобы узнать сколько многоэтажных домов приходится на две трети, умножим на 2

Ответ: жилые многоэтажные дома составляют всех зданий в городе.

Решение

Изобразим схематически один метр веревки:

Выделим на этом рисунке метра:

Здесь же выделим метра

Не выделенным на м остался один кусочек. Узнаем, что это за кусочек. Для этого из вычтем

м это часть веревки, которую нужно отрезать. Тогда мы получим м веревки.

Теперь осталось узнать сколько раз м содержит м

Значит, чтобы не производя измерений от м веревки отрезать м, нужно эту веревку сложить вчетверо и отрезать одну часть. Оставшаяся часть и будет половиной от одного метра.

Ответ: чтобы от веревки, длина которой м отрезать м, нужно сложить эту веревку вчетверо и отрезать от неё одну часть. Оставшаяся часть станет м веревки.

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

источник