Меню Рубрики

Прямой параллелепипед площадь боковой поверхности

Метод 2. Допустим, что прямоугольный параллелепипед является кубом. Куб — это такой прямоугольный параллелепипед, у которого каждая грань представлена квадратом. Следовательно, все его стороны равны. Тогда формула для расчеты длины его диагонали будет выражена так:

Чаще вопрос о высоте нам встречается в задачах. Всегда нам даны сведения, позволяющие вычислить её. Это может быть объем, линейные размеры параллелепипеда, длины его диагоналей.

Так объем параллелепипеда равен произведению его основания на высоту, то есть, зная объем и размер основания, легко выяснить высоту путем деления первого на второе. Если вы имеете дело с прямоугольным параллелепипедом, то есть такие, основание которого прямоугольник, вам могут попытаться усложнить задачу, в связи с его особенными качествами. Так в диагонали равен сумме квадратов трех измерений параллелепипеда. Если в «дано» к задаче о прямоугольном параллелепипеде указаны длина его диагонали и длины сторон основания, то этих сведений достаточно, чтобы выяснить размер искомой высоты.

Вычислить сумму всех ребер параллелепипеда – задача несложная. Нужно просто хорошо усвоить, что представляет собой данное геометрическое тело, и знать его свойства. Решение задачи вытекает из самого определения параллелепипеда.

Параллелепипед – это призма, основанием которой является параллелограмм.

Параллелепипед имеет 6 граней, и все они являются параллелограммами.

Противоположные грани равны и параллельны. Это важно.

источник

Параллелепипед — самая распространенная фигура из тех, что окружают людей. Большинство помещений представляют собой именно его. Особенно важно знать площадь параллелепипеда, хотя бы его боковых граней, во время ремонта. Ведь нужно точно знать, сколько материала приобрести.

Это призма с четырехугольным основанием. Поэтому у нее четыре боковых грани, которые являются параллелограммами. То есть такое тело имеет всего 6 граней.

Для определения параллелепипеда в пространстве у него определяют площадь и объем. Первая может быть как отдельно для каждой грани, так и для всей поверхности. К тому же выделяют еще и площадь только боковых граней.

Наклонный. Такой, у которого боковые грани образуют с основанием угол, отличный от 90 градусов. У него верхний и нижний четырехугольники не лежат друг напротив друга, а сдвинуты.

Прямой. Параллелепипед, боковые грани которого являются прямоугольниками, а в основании лежит фигура с произвольными величинами углов.

Прямоугольный. Частный случай предыдущего вида: в его основании находится прямоугольник.

Куб. Особый тип прямого параллелепипеда, в котором все грани представлены квадратами.

Может возникнуть ситуация, когда они окажутся полезными в том, чтобы найти площадь параллелепипеда.

  • Грани, которые лежат напротив друг друга, не только параллельны, но и равны.
  • Диагонали параллелепипеда точкой пересечения делятся на равные части.
  • Более общий случай, если отрезок соединяет две точки на поверхности тела и проходит через точку пересечения диагоналей, то он делится этой точкой пополам.
  • Для прямоугольного параллелепипеда справедливо равенство, в котором в одной его части стоит квадрат диагонали, а в другой — сумма квадратов его высоты, ширины и длины.

Если обозначить высоту тела как «н», а периметр основания буквой Рос, то вся боковая поверхность может быть вычислена по формуле:

Используя эту формулу и определив площадь основания, можно сосчитать полную площадь:

В последней записи Sос., то есть площадь основания параллелепипеда, может быть вычислена по формуле для параллелограмма. Другими словами, потребуется выражение, в котором нужно перемножить сторону и высоту, опущенную на нее.

Принято стандартное обозначение длины, ширины и высоты такого тела буквами «а», «в» и «с» соответственно. Площадь боковой поверхности будет выражаться формулой:

Чтобы вычислить полную площадь прямоугольного параллелепипеда, потребуется такое выражение:

Если окажется необходимым узнать площадь его основания, то достаточно вспомнить, что это прямоугольник, а значит, достаточно перемножить «а» и «в».

Его боковая поверхность образована четырьмя квадратами. Значит, чтобы ее найти, потребуется воспользоваться известной для квадрата формулой и умножить ее на четыре.

Sбок = 4 * а 2

А из-за того, что его основания — такие же квадраты, полная площадь определится по формуле:

S = 6 * а 2

Поскольку его грани — это параллелограммы, то нужно узнать площадь каждого из них и потом сложить. К счастью, противолежащие равны. Поэтому вычислять площади нужно только три раза, а потом умножить их на два. Если записать это в виде формулы, то получится следующее:

Здесь S1 и S2 являются площадями двух боковых граней, а S3 — основания.

Задание первое. Условие. Необходимо узнать длину диагонали куба, если площадь всей его поверхности равна 200 мм 2 .

Решение. Начать нужно с получения выражения для искомой величины. Ее квадрат равен трем квадратам стороны куба. Это значит, что диагональ равна «а», умноженной на корень из 3.

Но сторона куба неизвестна. Здесь потребуется воспользоваться тем, что известна площадь всей поверхности. Из формулы получается, что «а» равно квадратному корню из частного S и 6.

Осталось только сосчитать. Ребро куба оказывается равным √ (200/6), что равно 10/ √3 (мм). Тогда диагональ получится равной (10/ √3) * √3 = 10 (мм).

Ответ. Диагональ куба равна 10 мм.

Задание второе. Условие. Необходимо вычислить площадь поверхности куба, если известно, что его объем равен 343 см 2 .

Решение. Потребуется воспользоваться той же формулой для площади куба. В ней опять неизвестно ребро тела. Но зато дан объем. Из формулы для куба очень просто узнать «а». Оно будет равно кубическому корню из 343. Простой подсчет дает такое значение для ребра: а = 7 см.

Теперь осталось только сосчитать его квадрат и умножить на 6. а 2 = 7 2 = 49, отсюда площадь окажется равной 49 * 6 = 294 (см 2 ).

Задание третье. Условие. Дана правильная четырехугольная призма со стороной основания 20 дм. Необходимо найти ее боковое ребро. Известно, что площадь параллелепипеда равна 1760 дм 2 .

Решение. Начинать рассуждения нужно с формулы для площади всей поверхности тела. Только в ней нужно учесть, что ребра «а» и «в» равны. Это следует из утверждения о том, что призма правильная. Значит, в его основании лежит четырехугольник с равными сторонами. Отсюда а = в = 20 дм.

Учитывая это обстоятельство, формула площади упростится до такой:

В ней известно все, кроме искомой величины «с», которая как раз и является боковым ребром параллелепипеда. Чтобы его найти, нужно выполнить преобразования:

  • разделить все неравенство на 2;
  • потом перенести слагаемые так, чтобы слева оказалось слагаемое 2ас, а справа — деленная на 2 площадь и квадрат «а», причем последнее будет со знаком «-»;
  • затем поделить равенство на 2а.

В итоге получится выражение:

После подстановки всех известных величин и выполнения действий получается, что боковое ребро равно 12 дм.

Ответ. Боковое ребро «с» равняется 12 дм.

Задание четвертое. Условие. Дан прямоугольный параллелепипед. Одна из его граней имеет площадь, равную 12 см 2 . Необходимо вычислить длину ребра, которое перпендикулярно этой грани. Дополнительное условие: объем тела равен 60 см 3 .

Решение. Пусть известна площадь той грани, которая расположена лицом к наблюдателю. Если принять за обозначение стандартные буквы для измерений параллелепипеда, то в основании ребра будут «а» и «в», вертикальное — «с». Исходя из этого, площадь известной грани определится как произведение «а» на «с».

Теперь нужно воспользоваться известным объемом. Его формула для прямоугольного параллелепипеда дает произведение всех трех величин: «а», «в» и «с». То есть известная площадь, умноженная на «в», дает объем. Отсюда получается, что искомое ребро можно вычислить из уравнения:

Элементарный расчет дает результат 5.

Ответ. Искомое ребро равно 5 см.

Задание пятое. Условие. Дан прямой параллелепипед. В его основании лежит параллелограмм со сторонами 6 и 8 см, острый угол между которыми равен 30º. Боковое ребро имеет длину 5 см. Требуется вычислить полную площадь параллелепипеда.

Решение. Это тот случай, когда нужно узнать площади всех граней по отдельности. Или, точнее, трех пар: основание и две боковые.

Поскольку в основании расположен параллелограмм, то его площадь вычисляется как произведение стороны на высоту к ней. Сторона известна, а высота — нет. Ее нужно сосчитать. Для этого потребуется значение острого угла. Высота образует в параллелограмме прямоугольный треугольник. В нем катет равен произведению синуса острого угла, который ему противолежит, на гипотенузу.

Пусть известная сторона параллелограмма — это «а». Тогда высота будет записана как в * sin 30º. Таким образом, площадь основания равна а * в * sin 30º.

С боковыми гранями все проще. Они — прямоугольники. Поэтому их площади — это произведение одной стороны на другую. Первая — а * с, вторая — в * с.

Осталось объединить все в одну формулу и сосчитать:

S = 2 * (а * в * sin 30º + а * с + в * с )

После подстановки всех величин получается, что искомая площадь равна 188 см 2 .

источник

Параллелепипед – это призма, основанием которой служит параллелограмм. В параллелепипеде противоположные грани равны и параллельны. Диагонали его пересекаются в одной точке, которая лежит на оси симметрий, и делятся ею пополам.

  • Прямой параллелепипед – параллелепипед, боковые рёбра которого перпендикулярны к основаниям.
  • Наклонный параллелепипед – параллелепипед, боковые рёбра которого не перпендикулярны к основаниям.
  • Прямоугольный – прямой параллелепипед, основания которого – прямоугольники.

Площадь полной поверхности параллелепипеда равна сумме площадей её боковых поверхностей и площади основания:

$$S = 2 \cdot (a \cdot b + b \cdot c + a \cdot c)$$

  1. Найдите площадь поверхности прямоугольного параллелепипеда, если его стороны равны 2, 3, 4 см
    Посмотреть решение
Читайте также:  Какие авто не облагаются налогом

Решение:

По формуле площади поверхности прямоугольного параллелепипеда:

$$ S = 2 \cdot ( a \cdot b + a \cdot c + b \cdot c) $$

$$ S = 2 \cdot ( 2 \cdot 3 + 2 \cdot 4 + 3 \cdot 4) = 52 \ см^2 $$

Решение:

$$ S = 2 \cdot (a \cdot b + a \cdot c + b \cdot c) $$

$$ S = 2 \cdot (3 \cdot 6 + 3 \cdot 5 + 5 \cdot 6) $$

Решение:

$$ S = 2 \cdot c \cdot (a + b) $$ , отсюда: $$ c = \frac < 2 \cdot (a + b) >= 3 \ см $$

По формуле площади поверхности прямоугольного параллелепипеда находим площадь:

$$ S = 2 \cdot (a \cdot b + a \cdot c + b \cdot c) $$

$$ S = 2 \cdot (1 \cdot 2 + 1 \cdot 3 + 2 \cdot 3) = 22 \ см^2 $$

Решение:

$$ V = a \cdot b \cdot c $$ , отсюда: $$ c = \frac <(a \cdot b )>= 5 \ см $$

$$ S = 2 \cdot (a \cdot b + a \cdot c + b \cdot c) $$

$$ S = 2 \cdot (2 \cdot 2 + 2 \cdot 5 + 2 \cdot 5) = 48 \ см^2 $$

Решение:

$$ d^2 = a^2 \cdot b^2 \cdot c^2 $$ , отсюда:

По формуле для площади поверхности прямоугольного параллелепипеда находим площадь:

$$ S = 2 \cdot (a \cdot b + a \cdot c + b \cdot c) $$

$$ S = 2 \cdot (2 \cdot 4 + 2 \cdot 4 + 4 \cdot 4) = 64 \ см^2 $$

источник

Параллелепипед – объемная фигура, одна из разновидностей призм, в основании которой лежит четырехугольник – параллелограмм, а все остальные грани также образованы данным видом четырехугольников. Площадь боковой поверхности параллелепипеда обнаружить дюже легко.

1. Стоит для начала разобраться, что из себя представляет боковая поверхность параллелепипеда. Она представляет из себя сумму площадей четырех параллелограммов, находящихся по бокам данной объемной фигуры. Площадь всякого параллелограмма находится по формуле:S = a*h, где a – одна из сторон данного параллелограмма, h – высота, проведенная к этой стороне.Если же параллелограмм представляет из себя прямоугольник, его площадь находится так:S = a*b, где a и b – стороны данного прямоугольника.Таким образом, площадь боковой поверхности параллелепипеда находится так:S = s1+s2+s3+s4, где S1, S2, S3 и S4 – площади, соответственно, четырех параллелограммов, образующих боковую поверхность параллелепипеда.

2. В том случае, если дан прямой параллелепипед, у которого знамениты периметр основания P, высота его h, то обнаружить площадь его боковой поверхности дозволено обнаружить так:S = P*h.Если дан прямоугольный параллелепипед (у которого все грани – прямоугольники), у которого вестимы длины сторон основания (a и b), a c – его боковое ребро, то боковая поверхность этого параллелепипеда вычисляется по такой формуле:S = 2*c*(a+b).

3. Для большей ясности дозволено разглядеть примеры:Пример 1. Дан прямой параллелепипед с периметром основания 24 см, высотой 8 см. Исходя из этих данных площадь боковой поверхности его будет вычисляться так:S = 24*8 = 192 см?Пример 2. Пускай в прямоугольном параллелепипеде стороны основания равны 4 см и 9 см, а длина его бокового ребра 9 см. Зная эти данные, дозволено вычислить и боковую поверхность:S = 2*9*(4+9) = 234 см?

Параллелепипед – фигуры объемная, характеризующаяся наличием граней и ребер. Вся боковая грань образуется двумя параллельными боковыми ребрами и соответствующими друг другу сторонами обоих оснований. Дабы обнаружить боковую поверхность параллелепипеда , надобно сложить площади всех его вертикальных либо наклонных параллелограммов.

1. Параллелепипед – пространственная геометрическая фигура, имеющая три измерения: длину, высоту и ширину. В связи с этим он имеет две горизонтальные грани, называемые основаниями, а также четыре боковые. Все они имеют форму параллелограмма, но бывают и частные случаи, которые упрощают не только графическое изображение задачи, но и сами расчеты.

2. Основными числовыми колляциями параллелепипеда являются площадь поверхности и объем. Различают полную и боковую поверхность фигуры, которые получаются суммированием площадей соответствующих граней, в первом случае – всех шести, во втором – только боковых.

3. Дабы обнаружить боковую поверхность параллелепипеда , сложите площади четырех граней. Исходя из свойства фигуры, согласно которому противолежащие грани параллельны и равны, запишите:S = 2•Sб1 + 2•Sб2.

4. Разглядите для начала всеобщий случай, когда фигура наклонная: основания лежат в параллельных плоскостях, но смещены касательно друг друга:Sб1 = a•h; Sб2 = b•h, где а и b – основания всего бокового параллелограмма, h – высота параллелепипеда .S = (2•a + 2•b)•h.

5. Посмотрите наблюдательно на выражение, стоящее в скобках. Величины a и b дозволено представить не только, как основания боковых ребер, но и как стороны основания параллелепипеда , тогда это выражение есть не что иное, как его периметр:S = P•h.

6. Наклонный параллелепипед превращается в прямой, если угол между основанием и боковым ребром становится прямым. Тогда высота параллелепипеда равна длине боковой грани:S = P•с.

7. Прямоугольный параллелепипед – знаменитая форма исполнения многих конструкции: домов, предметов мебели, коробок, моделей бытовой техники и пр. Это связано с простотой их возведения/создания, от того что все углы составляют 90°. Боковая поверхность такой фигуры аналогична такой же числовой характеристике прямого, отличие между ними проявляется только при расчете полной поверхности.

8. Куб – параллелепипед, у которого все измерения равны:S = 4•Sб = 4•a?.

источник

Призмой называется многогранник, две грани которого – равные n-угольники (основания), лежащие в параллельных плоскостях, а остальные n граней – параллелограммы (боковые грани). Боковым ребром призмы называется сторона боковой грани, не принадлежащая основанию.

Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой призмой (рис. 1). Если боковые ребра не перпендикулярны плоскостям оснований, то призма называется наклонной. Правильной призмой называется прямая призма, основания которой – правильные многоугольники.

Высотой призмы называется расстояние между плоскостями оснований. Диагональю призмы называется отрезок, соединяющий две вершины, не принадлежащие одной грани. Диагональным сечением называется сечение призмы плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани. Перпендикулярным сечением называется сечение призмы плоскостью, перпендикулярной боковому ребру призмы.

Площадью боковой поверхности призмы называется сумма площадей всех боковых граней. Площадью полной поверхности называется сумма площадей всех граней призмы (т.е. сумма площадей боковых граней и площадей оснований).

Для произвольной призмы верны формулы:

(1)

где l – длина бокового ребра;

P – периметр перпендикулярного сечения;

Q – Площадь перпендикулярного сечения;

Sбок – площадь боковой поверхности;

Sполн – площадь полной поверхности;

Для прямой призмы верны формулы:

где p – периметр основания;

l – длина бокового ребра;

Параллелепипедом называется призма, основанием которой служит параллелограмм. Параллелепипед, у которого боковые ребра перпендикулярны к основаниям, называется прямым (рис. 2). Если боковые ребра не перпендикулярны основаниям, то параллелепипед называется наклонным. Прямой параллелепипед, основанием которого является прямоугольник, называется прямоугольным. Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.

Грани параллелепипеда, не имеющие общих вершин, называются противолежащими. Длины ребер, исходящих из одной вершины, называются измерениями параллелепипеда. Так как параллелепипед – это призма, то основные его элементы определяются аналогично тому, как они определены для призм.

Теоремы.

1. Диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.

2. В прямоугольном параллелепипеде квадрат длины диагонали равен сумме квадратов трех его измерений:

3. Все четыре диагонали прямоугольного параллелепипеда равны между собой.

Для произвольного параллелепипеда верны формулы:

где l – длина бокового ребра;

P – периметр перпендикулярного сечения;

Q – Площадь перпендикулярного сечения;

Sбок – площадь боковой поверхности;

Sполн – площадь полной поверхности;

Для прямого параллелепипеда верны формулы:

(2)

где p – периметр основания;

l – длина бокового ребра;

H – высота прямого параллелепипеда.

Для прямоугольного параллелепипеда верны формулы:

(3)

где p – периметр основания;

a,b,c – измерения параллелепипеда.

Для куба верны формулы:

Пример 1.Диагональ прямоугольного параллелепипеда равна 33 дм, а его измерения относятся, как 2 : 6 : 9. Найти измерения параллелепипеда.

Решение. Для нахождения измерений параллелепипеда воспользуемся формулой (3), т.е. тем фактом, что квадрат гипотенузы прямоугольного параллелепипеда равен сумме квадратов его измерений. Обозначим через k коэффициент пропорциональности. Тогда измерения параллелепипеда будут равны 2k, 6k и 9k. Запишем формулу (3) для данных задачи:

Решая это уравнение относительно k, получим:

Значит, измерения параллелепипеда равны 6 дм, 18 дм и 27 дм.

Ответ: 6 дм, 18 дм, 27 дм.

Пример 2. Найти объем наклонной треугольной призмы, основанием которой служит равносторонний треугольник со стороной 8 см, если боковое ребро равно стороне основания и наклонено под углом 60º к основанию.

Решение. Сделаем рисунок (рис. 3).

Для того, чтобы найти объем наклонной призмы необходимо знать площадь ее основания и высоту. Площадь основания данной призмы – это площадь равностороннего треугольника со стороной 8 см. Вычислим ее:

Высотой призмы является расстояние между ее основаниями. Из вершины А1 верхнего основания опустим перпендикуляр на плоскость нижнего основания А1D. Его длина и будет высотой призмы. Рассмотрим DА1АD: так как это угол наклона бокового ребра А1А к плоскости основания, А1А = 8 см. Из этого треугольника находим А1D:

Теперь вычисляем объем по формуле (1):

Пример 3. Боковое ребро правильной шестиугольной призмы равно 14 см. Площадь наибольшего диагонального сечения равна 168 см 2 . Найти площадь полной поверхности призмы.

Решение. Сделаем рисунок (рис. 4)

Наибольшее диагональное сечение – прямоугольник AA1DD1, так как диагональ AD правильного шестиугольника ABCDEF является наибольшей. Для того, чтобы вычислить площадь боковой поверхности призмы, необходимо знать сторону основания и длину бокового ребра.

Зная площадь диагонального сечения (прямоугольника), найдем диагональ основания.

Поскольку , то

Так как то АВ = 6 см.

Тогда периметр основания равен:

Найдем площадь боковой поверхности призмы:

Площадь правильного шестиугольника со стороной 6 см равна:

Находим площадь полной поверхности призмы:

Ответ:

Пример 4. Основанием прямого параллелепипеда служит ромб. Площади диагональных сечений 300 см 2 и 875 см 2 . Найти площадь боковой поверхности параллелепипеда.

Читайте также:  Как узнать к какому региону номер телефона относится

Решение. Сделаем рисунок (рис. 5).

Обозначим сторону ромба через а, диагонали ромба d1 и d2, высоту параллелепипеда h. Чтобы найти площадь боковой поверхности прямого параллелепипеда необходимо периметр основания умножить на высоту: (формула (2)). Периметр основания р = АВ + ВС + CD + DA = 4AB = 4a, так как ABCD – ромб. Н = АА1 = h. Т.о. Необходимо найти а и h.

Рассмотрим диагональные сечения. АА1СС1 – прямоугольник, одна сторона которого диагональ ромба АС = d1, вторая – боковое ребро АА1 = h, тогда

Используя свойство параллелограмма такое, что сумма квадратов диагоналей равна сумме квадратов всех его сторон, получим равенство Получим следующее:

Из первых двух равенств выразим и подставим в третье. Получим:

и далее

Тогда

Пример 5. На ребрах СС1, AD и АВ куба ABCDA1B1C1D1 взяты соответственно точки Р, М, R – середина этих ребер. Построить сечение куба плоскостью, проходящей через точки Р, М, R. Считая ребро куба равным 24 см, найти площадь полученного сечения.

Решение. Сделаем рисунок (рис. 6).

Построение. Прямая MR – след секущей плоскости на плоскости нижнего основания. Получается искомое сечение куба PNRMK. Для вычисления его площади воспользуемся теоремой о площади ортогональной проекции многоугольника на плоскость. Многоугольник PNRMK, его ортогональная проекция – СВRMD, определим, где угол между плоскостями этих многоугольников. Ребром двугранного угла является прямая MR. Из точки Р опустим перпендикуляр на прямую MR: точка Е – середина отрезка MR. – угол между плоскостью многоугольника и его проекции. Теорему запишем в виде:

Тогда

Вычислим Так как ABCD – квадрат, а – треугольник равнобедренный то

Вычислим из

Площадь сечения:

Ответ:

Дата добавления: 2017-09-19 ; просмотров: 1326 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

При изучении школьной математики часто встречаются задания, в которых требуется определить полную или боковую площадь поверхности прямоугольного или обычного параллелепипеда. Научимся это делать.

Для того, чтобы научиться вычислять площадь поверхности параллелепипеда необходимо представлять, что это такое.

Изучим основные понятия. В дальнейших наших рассуждениях площадь будем обозначать латинской буквой S, угол между сторонами a и b будем обозначать как (ab).

Параллелепипедом в математике именуется четырехугольная призма, у которой все грани являются параллелограммами.

  1. Грань — одна из поверхностей пространственного тела.
  2. Параллелограмм — четырёхугольник с попарно параллельными противоположными сторонами.
  3. Поверхности параллелепипеда это сумма поверхностей всех его граней.
  4. Прямоугольный параллелепипед — пространственное тело у которого гранями являются прямоугольники.
  5. Прямоугольник — четырёхугольник у которого все углы прямые.
  6. Куб — пространственное тело у которого гранями являются квадраты.
  7. Квадрат — прямоугольник у которого все стороны равны между собой.
  8. Равными называются фигуры, совмещающиеся при наложении.

Рассмотрим, как находятся площади, могущие составлять грани параллелепипеда.

  1. Площадь квадрата равна произведению его стороны самой на себя. Формула площади квадрата имеет вид S = a*a = a^2.
  2. Прямоугольника — вычисляется с помощью умножения большей его стороны (длины) на меньшую его сторону (ширину). Формула площади прямоугольника имеет вид S = a*b.
  3. Параллелограмма — найти сложнее и имеется несколько различных способов. Наиболее часто в математике применяются формулы для нахождения с помощью стороны и опущенной на неё высоты или двух сторон и синуса угла между ними. Записываются они следующим образом: S = a*h, S = a*b*sin (ab).

Рассмотрим на примерах как найти площадь каждой из рассматриваемых нами фигур.

1. Длина стороны квадрата равна 1600 метров. Определим его площадь.

  • S = a*a, отсюда в искомом случае S = 1600*1600 = 2 560 000 метров квадратных.

2. Стороны прямоугольника равны 90 и 200 метров соответственно. Определим его S.

  • S = a*b, следовательно в нашем варианте получится S = 90*200 = 18 000 метров квадратных.

3. С параллелограммом рассмотрим два случая нахождения.

Сторона равна 300 метров, а опущенная на неё высота 250 метров. Тогда получится:

  • S = a*h = 300*250 = 75 000 метров квадратных.

Второй вариант — стороны равны 550 и 200 метров соответственно. Угол между ними 30 градусов. Имеем:

  • S = a*b*sin (ab) = 550*200*sin 30 = 110 000*0.5 = 55 000 квадратных метров.

Как видно из примеров, приведённых выше, никаких сложностей нет.

Так как наши тела имеют три принципиально различных варианта, то каждый из них мы рассмотрим в отдельности. Учтём, что полной поверхностью является сумма площадей всех граней тела, а боковой — только боковых граней.

Здесь все крайне просто — грани этой фигуры равны между собой, так что S = a*a*6.

На примере это выглядит следующим образом:

Сторона равна 88 сантиметров. Площадь полной поверхности?

При данных условиях имеем:

S = a*a*6 = 88*88*6 = 46 464 сантиметра квадратного.

Здесь все так же довольно легко — нужно помнить, что противоположные грани равны. Таким образом, находим поверхность трёх различных граней, и каждую удваиваем. Формулы нахождения будут выглядеть следующим образом:

S = 2*(S1 + S2 + S3), где S1, S2, S3 площади всех граней соответственно.

Второй вариант S = 2*(a*b + a*c + b*c), где a, b, c соответствующие рёбра прямоугольного параллелепипеда.

Снова рассмотрим пример. Пусть рёбра прямоугольного параллелепипеда равняются 20, 30 и 40 метров. Площадь полной поверхности?

Имеем, S = 2*(a*b + a*c + b*c) = 2*(20*30 + 20*40 + 30*40) = 2*(600 + 800 + 1200) = 2*2600 = 5 200 квадратных метров.

Как видно, находить площадь прямоугольного параллелепипеда также совершенно несложно.

Теперь рассмотрим случай когда заданное нам тело имеет вид простого параллелепипеда, его гранями являются обычные параллелограммы. Здесь, как и в предыдущем случае противоположные грани равны. Следовательно, определив поверхность трёх различных граней, мы сможем определить и полную поверхность. Значит, одна из формул опять-таки будет иметь вид:

  • S = 2*(S1 + S2 + S3), где S1, S2, S3 площади трёх различных граней соответственно. Запишем исходя из наших рассуждений, ещё две формулы:
  • S = 2*(a*h1 + b*h2 + c*h3), где a, b, c соответствующие рёбра параллелепипеда, а h1, h2, h3 опущенные на них высоты.
  • S = 2*(a*b*sin (ab) + a*c*sin (ac) + b*c*sin (bc)), где a, b, c соответствующие рёбра, а (ab), (ac), (bc) углы между ними.

Снова приведём пример:

  • a = 15, b = 25, c = 25, h1 = 10, h2 = 20, h3 = 15. Пл. полной поверхности? Согласно формуле получим:
  • S = 2*(a*h1 + b*h2 + c*h3) = 2*(15*10 + 25*20 + 25*15) = 2*(150 + 500 + 375) = 2*1025 = 2 050 миллиметров квадратных.

В некоторых заданиях требуется определение только площади боковой поверхности параллелепипеда. В таком случае чётко указывается, что является основанием и находится только суммарная пл. четырёх боковых граней. Все приведённые выше рассуждения остаются верными.

Тщательно изучив все сказанное выше, можно отметить, что никакой особой сложности задача по определению площади параллелепипеда не вызывает. Нужно всего-навсего чётко представлять все данные в материале математические понятия, абсолютно точно выучить формулы, ну и, разумеется, уметь хорошо проводить арифметические действия.

Из видео вы узнаете, как находить площать прямоугольного параллелепипеда.

источник

Параллелепипедом называется призма, основаниями которой служат параллелограммы (рис.2.4). Параллелепипед, боковые ребра которого

перпендикулярны к плоскостям оснований, называется прямым. В противном случае — параллелепипед называется наклонным.

Кубом называют прямоугольный параллелепипед, все двенадцать ребер которого равны. Все шесть граней куба — равные квадраты.

На рисунке (а) изображен наклонный параллелепипед, а на рисунке (б) — прямой параллелепипед. Прямой параллелепипед, основания которого прямоугольники, называется прямоугольным. Все его грани — прямоугольники, и длины трех ребер, выходящих из одной вершины, называются измерениями параллелепипеда.

Некоторые свойства параллелепипеда:

ь У параллелепипеда противолежащие грани параллельны, и равны.

Рис. 2.5. Параллелепипед.

Рассмотрим какие-нибудь две противолежащие грани параллелепипеда, например А1А2А’2А’1 и A3A4A’4A’3 (рис. 2.5). Так как все грани параллелепипеда — параллелограммы, то прямая A1A2 параллельна прямой А4А3, а прямая А1А’1 параллельна прямой А4А4′. Отсюда следует, что плоскости рассматриваемых граней параллельны.

Из того, что грани параллелепипеда — параллелограммы, следует, что отрезки А1А4, А1’А4′, A’2A’3 и A2A3 — параллельны и равны. Отсюда заключаем, что грань А1А2А’2А’1 совмещается параллельным переносом вдоль ребра А1А4 с гранью А3А4А’4А’3. Значит, эти грани равны. Аналогично доказывается параллельность и равенство любых других противолежащих граней параллелепипеда. Теорема доказана.

ь Диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.

Рассмотрим какие-нибудь две диагонали параллелепипеда, например А1А’3 и A4A’2 (рис. 2.6). Так как четырехугольники А1А2А3А4 и A2A’2A’3A3 — параллелограммы с общей стороной A2A3, то их стороны А1А4 и A’2A’3 параллельны друг другу, а значит, лежат в одной плоскости. Эта плоскость пересекает плоскости противолежащих граней параллелепипеда по параллельным прямым A1A’2 и A4A’3. Следовательно, четырехугольник A4A1A’2A’3 — параллелограмм. Диагонали параллелепипеда A1A’3 и A4A’2 являются диагоналями этого параллелограмма. Поэтому они пересекаются и точкой пересечения О делятся пополам. Аналогично доказывается, что диагонали A1A’3 и A2A’4, а также диагонали A1A’3 и A3A’1 пересекаются и точкой пересечения делятся пополам. Отсюда заключаем, что все четыре диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам. Теорема доказана.

ь Сумма квадратов всех диагоналей прямоугольного параллелепипеда равна сумме квадратов всех его ребер (рис. 2.7), то есть: d1 2 + d2 2 + d3 2 + d4 2 = 4b 2 + 4c 2

ь Все диагонали прямоугольного параллелепипеда равны. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений: d 2 = a 2 + b 2 + c 2

Так как AA1 перпендикулярно к основанию ABCD, то угол AA1C прямой (рис.2.8). Из прямоугольного треугольника AA1C по теореме Пифагора получаем:

но AC — это диагональ прямоугольника ABCD, поэтому AC 2 =AB 2 +AD 2 . Кроме того, AA1=CC1, следовательно,

Диагонали прямого параллелепипеда вычисляются по формулам:

Читайте также:  С чего начать изменить имидж

d1 2 = a 2 + b 2 + c 2 + 2abcos Ь

d2 2 =a 2 +b 2 +c 2 -2abcosЬ

ь В параллелепипед можно вписать тетраэдр.

Объем такого тетраэдра равен 1/3 части объема параллелепипеда.

Площадь боковой поверхности (или просто боковая поверхность) призмы (параллелепипеда) называется сумма площадей всех ее боковых граней. Площадью полной поверхности (или просто полная поверхность) призмы (параллелепипеда) называется сумма ее боковой поверхности и площадей оснований

источник

Диагонали ромба ABCD пересекаются в точке О. На стороне АВ взята точка К так, что прямая ОК перпендикулярна АВ и АК=2 см, ВК=8 см. Найдите диагонали ромба. Решение. При решении задачи использовали следующие утверждения: диагонали ромба перпендикулярны и точкой пересечения делятся.

Параллелепипед — самая распространенная фигура из тех, что окружают людей. Большинство помещений представляют собой именно его. Особенно важно знать площадь параллелепипеда, хотя бы его боковых граней, во время ремонта. Ведь нужно точно знать, сколько материала приобрести.

Это призма с четырехугольным основанием. Поэтому у нее четыре боковых грани, которые являются параллелограммами. То есть такое тело имеет всего 6 граней.

Для определения параллелепипеда в пространстве у него определяют площадь и объем. Первая может быть как отдельно для каждой грани, так и для всей поверхности. К тому же выделяют еще и площадь только боковых граней.

Наклонный. Такой, у которого боковые грани образуют с основанием угол, отличный от 90 градусов. У него верхний и нижний четырехугольники не лежат друг напротив друга, а сдвинуты.

Прямой. Параллелепипед, боковые грани которого являются прямоугольниками, а в основании лежит фигура с произвольными величинами углов.

Прямоугольный. Частный случай предыдущего вида: в его основании находится прямоугольник.

Куб. Особый тип прямого параллелепипеда, в котором все грани представлены квадратами.

Может возникнуть ситуация, когда они окажутся полезными в том, чтобы найти площадь параллелепипеда.

    Грани, которые лежат напротив друг друга, не только параллельны, но и равны. Диагонали параллелепипеда точкой пересечения делятся на равные части. Более общий случай, если отрезок соединяет две точки на поверхности тела и проходит через точку пересечения диагоналей, то он делится этой точкой пополам. Для прямоугольного параллелепипеда справедливо равенство, в котором в одной его части стоит квадрат диагонали, а в другой — сумма квадратов его высоты, ширины и длины.

Если обозначить высоту тела как «н», а периметр основания буквой Рос, то вся боковая поверхность может быть вычислена по формуле:

Используя эту формулу и определив площадь основания, можно сосчитать полную площадь:

В последней записи Sос., то есть площадь основания параллелепипеда, может быть вычислена по формуле для параллелограмма. Другими словами, потребуется выражение, в котором нужно перемножить сторону и высоту, опущенную на нее.

Принято стандартное обозначение длины, ширины и высоты такого тела буквами «а», «в» и «с» соответственно. Площадь боковой поверхности будет выражаться формулой:

Чтобы вычислить полную площадь прямоугольного параллелепипеда, потребуется такое выражение:

Если окажется необходимым узнать площадь его основания, то достаточно вспомнить, что это прямоугольник, а значит, достаточно перемножить «а» и «в».

Его боковая поверхность образована четырьмя квадратами. Значит, чтобы ее найти, потребуется воспользоваться известной для квадрата формулой и умножить ее на четыре.

А из-за того, что его основания — такие же квадраты, полная площадь определится по формуле:

Поскольку его грани — это параллелограммы, то нужно узнать площадь каждого из них и потом сложить. К счастью, противолежащие равны. Поэтому вычислять площади нужно только три раза, а потом умножить их на два. Если записать это в виде формулы, то получится следующее:

Здесь S1 и S2 являются площадями двух боковых граней, а S3 — основания.

Задание первое. Условие. Необходимо узнать длину диагонали куба, если площадь всей его поверхности равна 200 мм 2 .

Решение. Начать нужно с получения выражения для искомой величины. Ее квадрат равен трем квадратам стороны куба. Это значит, что диагональ равна «а», умноженной на корень из 3.

Но сторона куба неизвестна. Здесь потребуется воспользоваться тем, что известна площадь всей поверхности. Из формулы получается, что «а» равно квадратному корню из частного S и 6.

Осталось только сосчитать. Ребро куба оказывается равным √ (200/6), что равно 10/ √3 (мм). Тогда диагональ получится равной (10/ √3) * √3 = 10 (мм).

Ответ. Диагональ куба равна 10 мм.

Задание второе. Условие. Необходимо вычислить площадь поверхности куба, если известно, что его объем равен 343 см 2 .

Решение. Потребуется воспользоваться той же формулой для площади куба. В ней опять неизвестно ребро тела. Но зато дан объем. Из формулы для куба очень просто узнать «а». Оно будет равно кубическому корню из 343. Простой подсчет дает такое значение для ребра: а = 7 см.

Теперь осталось только сосчитать его квадрат и умножить на 6. а 2 = 7 2 = 49, отсюда площадь окажется равной 49 * 6 = 294 (см 2 ).

Задание третье. Условие. Дана правильная четырехугольная призма со стороной основания 20 дм. Необходимо найти ее боковое ребро. Известно, что площадь параллелепипеда равна 1760 дм 2 .

Решение. Начинать рассуждения нужно с формулы для площади всей поверхности тела. Только в ней нужно учесть, что ребра «а» и «в» равны. Это следует из утверждения о том, что призма правильная. Значит, в его основании лежит четырехугольник с равными сторонами. Отсюда а = в = 20 дм.

Учитывая это обстоятельство, формула площади упростится до такой:

В ней известно все, кроме искомой величины «с», которая как раз и является боковым ребром параллелепипеда. Чтобы его найти, нужно выполнить преобразования:

    разделить все неравенство на 2; потом перенести слагаемые так, чтобы слева оказалось слагаемое 2ас, а справа — деленная на 2 площадь и квадрат «а», причем последнее будет со знаком «-»; затем поделить равенство на 2а.

В итоге получится выражение:

После подстановки всех известных величин и выполнения действий получается, что боковое ребро равно 12 дм.

Ответ. Боковое ребро «с» равняется 12 дм.

Задание четвертое. Условие. Дан прямоугольный параллелепипед. Одна из его граней имеет площадь, равную 12 см 2 . Необходимо вычислить длину ребра, которое перпендикулярно этой грани. Дополнительное условие: объем тела равен 60 см 3 .

Решение. Пусть известна площадь той грани, которая расположена лицом к наблюдателю. Если принять за обозначение стандартные буквы для измерений параллелепипеда, то в основании ребра будут «а» и «в», вертикальное — «с». Исходя из этого, площадь известной грани определится как произведение «а» на «с».

Теперь нужно воспользоваться известным объемом. Его формула для прямоугольного параллелепипеда дает произведение всех трех величин: «а», «в» и «с». То есть известная площадь, умноженная на «в», дает объем. Отсюда получается, что искомое ребро можно вычислить из уравнения:

Элементарный расчет дает результат 5.

Ответ. Искомое ребро равно 5 см.

Задание пятое. Условие. Дан прямой параллелепипед. В его основании лежит параллелограмм со сторонами 6 и 8 см, острый угол между которыми равен 30º. Боковое ребро имеет длину 5 см. Требуется вычислить полную площадь параллелепипеда.

Решение. Это тот случай, когда нужно узнать площади всех граней по отдельности. Или, точнее, трех пар: основание и две боковые.

Поскольку в основании расположен параллелограмм, то его площадь вычисляется как произведение стороны на высоту к ней. Сторона известна, а высота — нет. Ее нужно сосчитать. Для этого потребуется значение острого угла. Высота образует в параллелограмме прямоугольный треугольник. В нем катет равен произведению синуса острого угла, который ему противолежит, на гипотенузу.

Пусть известная сторона параллелограмма — это «а». Тогда высота будет записана как в * sin 30º. Таким образом, площадь основания равна а * в * sin 30º.

С боковыми гранями все проще. Они — прямоугольники. Поэтому их площади — это произведение одной стороны на другую. Первая — а * с, вторая — в * с.

Осталось объединить все в одну формулу и сосчитать:

S = 2 * (а * в * sin 30º + а * с + в * с )

После подстановки всех величин получается, что искомая площадь равна 188 см 2 .

    Как найти площадь боковой поверхности параллелепипеда Как найти площадь поверхности прямоугольного параллелепипеда Как найти площадь параллелепипеда

Если же параллелограмм представляет из себя прямоугольник, его площадь находится так:

S = a*b, где a и b — стороны данного прямоугольника. Таким образом, площадь Боковой поверхности параллелепипеда находится так:S = s1+s2+s3+s4, где S1, S2, S3 и S4 — площади, соответственно, четырех параллелограммов, образующих боковую поверхность параллелепипеда.

S = 24*8 = 192 см²Пример 2. Пусть в прямоугольном параллелепипеде стороны основания равны 4 см и 9 см, а длина его бокового ребра 9 см. Зная эти данные, можно вычислить и боковую поверхность:

    площадь поверхности параллелепипеда

    Как найти площадь боковой поверхности параллелепипеда Как найти площадь поверхности прямоугольного параллелепипеда Как найти площадь параллелепипеда

Если же параллелограмм представляет из себя прямоугольник, его площадь находится так:

S = a*b, где a и b — стороны данного прямоугольника. Таким образом, площадь Боковой поверхности параллелепипеда находится так:S = s1+s2+s3+s4, где S1, S2, S3 и S4 — площади, соответственно, четырех параллелограммов, образующих боковую поверхность параллелепипеда.

S = 24*8 = 192 см²Пример 2. Пусть в прямоугольном параллелепипеде стороны основания равны 4 см и 9 см, а длина его бокового ребра 9 см. Зная эти данные, можно вычислить и боковую поверхность:

    площадь поверхности параллелепипеда

источник