Меню Рубрики

Проекции скорости на оси координат

В векторной форме уравнения записываются легко и кратко. Но для практических вычислений нужно знать проекции вектора на оси координат выбранной системы отсчета. Положение точки А (рис. 2.8) задается радиус-вектором г. Спроецируем вектор г на оси х, у, г.

Рис. 2.8. Вектор перемещения точки А и её скорость 1)

Понятно, что х, у, z зависят от времени /, т. е. x(t), y(t), z(t). Зная зависимость этих координат от времени (закон движения точки), можно найти в каждый момент времени скорость точки.

Проекции вектора скорости и на оси х, у, z в обозначениях Лейбница:

-dr

Эти три равенства эквивалентны векторному равенству и = —.

Согласно общей формуле (2.2.2) модуль вектора скорости

Так как скорость — величина векторная, то её можно представить с помощью единичных векторов i, j, k:

В произвольном случае движения скорость не остается постоянной. Быстрота изменения скорости по времени и направлению характеризуется ускорением

Ускорение — величина векторная. При криволинейном движении о изменяется также и по направлению. В какую сторону? С какой скоростью? Выражение (2.3.8) на эти вопросы не отвечает.

Введем единичный вектор т (рис. 2.9), связанный с точкой А и направленный по касательной к траектории движения точки А (векторы т и и в точке А совпадают). Тогда можно записать:

где и = |и| — модуль вектора скорости.

Рис. 2.9. К выводу тангенциальной составляющей ускорение: единичный вектор т направлен по касательной к траектории

Получаем два слагаемых ускорения: ахтангенциальное ускорение, совпадающее с направлением в в данной точке, ап нормальное ускорение, или центростремительное, т. к. направлено оно к центру кривизны, перпендикулярно вектору т.

где du/df — скорость изменения модуля вектора скорости и.

Итак, ат показывает изменение вектора скорости по величине:

  • • если dv/dt > 0, то ат направлено в ту же сторону, что и вектор V, т. е. ускоренное движение;
  • • если do/dt

Рассмотрим подробнее второе слагаемое уравнения (2.3.9):

определяется скоростью движения точки по окружности и степенью искривленности траекторий (рис. 2.9, 2.10).

Степень искривленности плоской кривой характеризуется кривизной С. Радиус кривизны г — радиус такой окружности, которая сливается с кривой в данной точке на бесконечно малом ее участке dv.

Центры таких окружностей — центры кривизны т. О и О’.

Рис. 2.10. К выводу нормальной составляющей ускорения, показывающей быстроту изменения направления касательной к траектории

Скорость изменения направления касательной можно выразить как произведение скорости изменения угла на единичный вектор, показывающий направление изменения угла:

здесь п — единичный вектор, направленный перпендикулярно касательной (т) в данной точке, т. е. по радиусу к центру кривизны.

За время At материальная точка перемещается вдоль траектории на расстояние ds в пределе (при At —» 0), центры кривизны О и О’ сливаются и угол поворота Дер равен элементарному углу dtp, который определяет поворот dx.

Из (2.3.11) следует, что dep = ds/r, но т. к. ds = x>dt, то dep = x>dt/г.

Тогда — = —, следовательно — = — n; наконец, к— = — п, т. е.

Нормальное ускорение показывает быстроту изменения направления вектора скорости. Модуль нормального ускорения

Центростремительным называют ускорение, когда движение происходит по окружности. А когда движение происходит по произвольной кривой, говорят, нормальное ускорение, перпендикулярное к касательной в любой точке траектории.

Итак, возвращаясь к выражению (2.3.9), можно записать, что суммарный вектор ускорения при движении точки вдоль плоской кривой равен:

На рис. 2.11 изображено взаимное расположение векторов ускорения:

Рис. 2.11. Суммарное ускорение, нормальная и тангенциальная составляющие ускорения

Как видно из этого рисунка, модуль общего ускорения равен:

Рассмотрим несколько предельных (частных) случаев:

  • ах = 0; ап = 0 — равномерное прямолинейное движение;
  • ах const; ап 0 — равноускоренное прямолинейное движение;
  • ах 0; ап const — равномерное движение по окружности.

Прямая задача кинематики сводится к определению кинематических характеристик по известному закону движения.

При движении с постоянным ускорением (а = const)

Если о = i) ± at (а = const), то

Обратная задача кинематики заключается в нахождении закона движения по известной скорости (ускорению) и начальному кинематическому состоянию.

Пусть нам известно ускорение точки в каждый момент времени.

источник

Скорость – векторная величина, которая определяет быстроту движения и его направление в данный момент времени (измерение в м\с).

Кинематика поступательного движения

Средняя скорость

Мгновенная скорость

Модуль мгновенной скорости

Движение в одной плоскости .

176.59.98.28 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Равнопеременное движение по прямой.

3.1.1. Равнопеременное движение по прямой — движение по прямой с постоянным по модулю и направлению ускорением:

3.1.2. Ускорение ( ) — физическая векторная величина, показывающая, на сколько изменится скорость за 1 с.

где — начальная скорость тела, — скорость тела в момент времени t.

В проекции на ось Ox:

где — проекция начальной скорости на ось Ox, — проекция скорости тела на ось Ox в момент времени t.

Знаки проекций зависят от направления векторов и оси Ox.

График проекции ускорения от времени.

При равнопеременном движении ускорение постоянно, поэтому будет представлять собой прямые линии, параллельные оси времени (см. рис.):

Значение ускорения: чем дальше от оси времени лежит прямая, тем больше модуль ускорения

Скорость при равнопеременном движении.

В проекции на ось Ox:

Для равноускоренного движения:

Для равнозамедленного движения:

График проекции скорости в зависимости от времени.

График проекции скорости от времени — прямая линия.

Направление движения: если график (или часть его) находятся над осью времени, то тело движется в положительном направлении оси Ox.

Значение ускорения: чем больше тангенс угла наклона (чем круче поднимается вверх или опускает вниз), тем больше модуль ускорения; где — изменение скорости за время

Пересечение с осью времени: если график пересекает ось времени, то до точки пересечения тело тормозило (равнозамедленное движение), а после точки пересечения начало разгоняться в противоположную сторону (равноускоренное движение).

3.1.6. Геометрический смысл площади под графиком в осях

Площадь под графиком, когда на оси Oy отложена скорость, а на оси Ox — время — это путь, пройденный телом.

На рис. 3.5 нарисован случай равноускоренного движения. Путь в данном случае будет равен площади трапеции:

(3.9)

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8498 — | 7332 — или читать все.

176.59.98.28 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Единица ускорения.

Так как а = (vvo): t , то модуль ускорения равен единице, если равен единице модуль изменения скорости (vvo)и равен единице промежуток времени t. Поэтому за единицу ускорения в СИ принимается ускорение такого равноускоренного движения, при котором за 1 с скорость тела изменяется на 1 м/с. Следовательно, в СИ ускорение выражается в метрах в секунду за секунду или в метрах на секунду в квадрате (м/с 2 ).

Мы уже говорили, что при вычислениях нужно пользоваться формулами, в которые входят не векторы, а их проекции на оси координат.

При прямолинейном движении векторы v и v направлены вдоль одной прямой. Эта прямая в то же время есть траектория движения. Вдоль этой же прямой удобно направить и координатную ось (например, ось X).

В § 5 мы видели, что проекция суммы двух векторов на какую-нибудь ось равна сумме их проекций на ту же ось. Обозначим проекции векторов v, vo и а через vx v ,и ах. Тогда из уравнения (2) следует, что

Так как все три вектора v, v и а лежат на одной прямой (на оси X), то модули их проекций равны модулям самих векторов, а знаки проекций определяются тем, как направлены векторы по отношению к оси. Если знаки проекции векторов v и а совпадают, то модуль скорости v возрастает с

течением времени — тело разгоняется. Если же знаки проекций v и а противоположны, то модуль скорости v с течением времени уменьшается — тело тормозится. Векторы v, v и а при движении с возрастающей скоростью сонаправлены. При торможении вектор а направлен противоположно векторам v и v0.

Дата добавления: 2014-01-14 ; Просмотров: 452 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Для выполнения расчетов скоростей и ускорений необходимо переходить от записи уравнений в векторной форме к записи уравнений в алгебраической форме.

Векторы начальной скорости и ускорениямогут иметь различные направления, поэтому переход от векторной записи уравнений к алгебраической может оказаться весьма трудоемким.

Известно, что проекция суммы двух векторов на какую-либо координатную ось равна сумме проекций слагаемых векторов на ту же ось.

Поэтому для нахождения проекции вектора скоростина произвольную ось OX нужно найти алгебраическую сумму проекций векторовина ту же ось.

Проекцию вектора на ось считают положительной, если от проекции начала к проекции конца вектора нужно идти по направлению оси, и отрицательной в противоположном случае.

Из уравнения следует, что графиком зависимости проекции скорости равноускоренного движения от времени является прямая. Если проекция начальной скорости на ось OX равна нулю, то прямая проходит через начало координат.

Основные виды движения

Вращательное движение твердого тела относительно неподвижной оси – движение, при котором все точки твердого тела описывают окружности, центры которых лежат на одной прямой, называемой осью вращения.

Рассмотрим наиболее простой вид вращательного движения, и уделим особое внимание центростремительному ускорению.

При равномерном движении по окружности значение скорости остается постоянным, а направление вектора скорости изменяется в процессе движения.

За интервал времени t тело проходит путь . Этот путь равен длине дугиAB. Векторы скоростей ив точкахA и B направлены по касательным к окружности в этих точках, а угол между векторами иравен углу между радиусамиOA и OB. Найдем разность векторов и определим отношение изменения скорости кt:

Из подобия треугольников OAB и BCD следует

Если интервал времени ∆t мал, то мал и угол . При малых значениях угла  длина хорды AB примерно равна длине дуги AB, т.е. . Т.к.,, то получаем

.

Поскольку , то получаем

Промежуток времени, за который тело совершает полный оборот при движении по окружности, называется периодам обращения (Т). Т.к. длина окружности равна 2R, период обращения при равномерном движении тела со скоростью v по окружности радиусом R равняется:

Величина, обратная периоду обращения, называется частотой. Частота показывает, сколько оборотов по окружности совершает тело в единицу времени:

(с -1 )

источник

Проекции скорости точки на оси координат равны первым производным от конечных уравнений движения по времени.

Модуль скорости точки определяется формулой:

.

Проекции ускорения точки на оси координат равны первым производным от соответствующих проекций скорости по времени или вторым производным от конечных уравнений движения по времени:

или

где или

Модуль ускорения точки определяется формулой:

.

Естественный способ задания движения точки: задать траекторию точки; выбрать начало отсчета дуг на траектории; задать положительное и отрицательное направления отсчёта дуг; задать закон, выражающий зависимость естественной координаты S от времени – S(t) – закон движения точки.

Под естественной координатой S понимают расстояние, отсчитываемое по дуге траектории в соответствующем направлении (рис. 4.3).

Скалярной скоростью точки в данный момент времени называют предел средней скалярной скорости при :

Скалярная скорость точки в данный момент времени равна производной от естественной координаты по времени:

Скалярным касательным ускорением точки в данный момент времени называют предел среднего скалярного касательного ускорения точки при :

или .

Скалярное касательное ускорение точки в данный момент времени равно первой производной от скалярной скорости по времени или второй производной от естественной координаты по времени.

Модуль нормального ускорения точки в данный момент времени определяется выражением:

, где ρ – радиус кривизны траектории в точке.

Касательное ускорение направлено по касательной к траектории, нормальное – по главной нормали в сторону вогнутости траектории.

Касательное ускорение характеризует изменение модуля скорости, а нормальное – изменение направления скорости.

Ускорение точки при движении по любой траектории равно сумме касательного и нормального ускорения:

.

Классификация движений точки по ускорениям:

1. – движение неравномерное, прямолинейное;

2. – движение неравномерное, криволинейное;

3. – движение равномерное, криволинейное;

4. – движение равномерное, прямолинейное.

4.1.1. Задание К -1. Определение скорости и ускорения точки по заданным уравнениям её движения

Дано:точкаВ движется в плоскости XOY. Закон движения точки задан уравнениями: x=f1(t), y=f2(t) (табл. К -1), где x и y выражены в сантиметрах, t – в секундах.

Определить:уравнение траектории точки; для момента времени t1=1с найти скорость и ускорение точки, а также её касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории.

Указания: задача К1 относится к кинематике точки; скорость и ускорение точки в декартовых координатах определяются по формулам координатного способа задания движения точки, а касательное и нормальное ускорения точки — по формулам естественного способа задания её движения.

По предпоследней цифре шифра зачетной книжки выбирается уравнение, задающее изменении координаты X(t), а по последней – Y(t).

В задаче все искомые величины следует определить для момента времени t1=1с.

Таблица К-1

№№ п/п x=f1(t) y=f2(t)
Для строк 0-2 Для строк 3-6 Для строк 7-9
6cos(πt/6) – 3 12sin(πt/6) 2t 2 + 2 4cos(πt/6)
4cos(πt/6) -6cos(πt/3) 8sin(πt/4) 6cos 2 (πt/6)
2 – 3cos(πt/6) -3sin 2 (πt/6) (2+t) 2 4cos(πt/3)
t-4 9sin(πt/6) 2t 3 10cos(πt/6)
4-2t 3cos(πt/3) 2cos(πt/4) -4cos 2 (πt/6)
2-t 10sin(πt/6) 2 — 3t 2 12cos(πt/3)
2t 6sin 2 (πt/6) 2sin(πt/4) -3cos(πt/6)
8sin(πt/6) – 2 -2sin(πt/6) (t+1) 3 -8cos(πt/3)
12sin(πt/6) 9cos(πt/3) 2 — t 3 9cos(πt/6)
4 – 6sin(πt/6) -8sin(πt/6) 4cos(πt/4) -6cos(πt/3)

4.1.2. Пример решения К-1

Дано: уравнения движения точки в плоскости XOY:

x=12sin(πt/6), y=4cos(πt/6), где x, y – в сантиметрах, t – в секундах.

Определить: уравнение траектории точки; для момента времени t1=1с найти скорость и ускорение точки, а также её касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории.

Решение:

1. Для определения уравнения траектории точки исключим из данных уравнений движения параметр t:

– уравнение траектории точки – эллипс с полуосями 12 см и 4 см (рис. К -1).

2. Определим положение точки на траектории в момент времени t1=1с :

3. Скорость точки находим по её проекциям на координатные оси:

, при t1=1с

4. Аналогично найдём ускорение точки при t1=1с :

, при t1=1с

5. Находим касательное ускорение точки, зная численные значения всех величин, входящих в правую часть выражения:

при t1=1с

6. Нормальное ускорение точки определяем по формуле , подставляя известные численные значения. При t1=1с получим

7. Определяем радиус кривизны траектории: ρ=v 2 /a n при t1=1с ρ1=24,93 (см).

4.2. Плоскопараллельное (плоское) движение
твердого тела

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 9639 — | 7316 — или читать все.

176.59.98.28 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

В векторной форме уравнения записываются легко и кратко. Но для практических вычислений нужно знать проекции вектора на оси координат выбранной системы отсчета. Положение точки А (рис. 2.8) задается радиус-вектором г . Спроецируем вектор г на оси х,у, z.

Рис. 2.8. Вектор перемещения точки А и её скорость 1)

Понятно, что х, у9 z зависят от времени t, т. е. *(/), y(t), z(t). Зная зависимость этих координат от времени (закон движения точки), можно найти в каждый момент времени скорость точки.

Проекции вектора скорости и на оси x,y9z в обозначениях Лейбница:

Эти три равенства эквивалентны векторному равенству и = —.

Согласно общей формуле (2.2.2) модуль вектора скорости

Так как скорость — величина векторная, то её можно представить с помощью единичных векторов i, j, k :

В произвольном случае движения скорость нс остается постоянной. Быстрота изменения скорости по времени и направлению характеризуется ускорением

Ускорение — величина векторная. При криволинейном движении и изменяется также и по направлению. В какую сторону? С какой скоростью? Выражение (2.3.8) на эти вопросы не отвечает.

Введем единичный вектор т (рис. 2.9), связанный с точкой А и направленный по касательной к траектории движения точки А (векторы т и и в точке А совпадают). Тогда можно записать:

где о = |о| — модуль вектора скорости.

Рис. 2.9. К выводу тангенциальной составляющей ускорение: единичный вектор х направлен по касательной к траектории

Найдем ускорение:

Получаем два слагаемых ускорения: aхтангенциальное ускоре-

пие, совпадающее с направлением о в данной точке, апнормальное ускорение, или центростремительное, т. к. направлено оно к центру кривизны, перпендикулярно вектору т .

где do/dt — скорость изменения модуля вектора скорости о.

Итак, az показывает изменение вектора скорости по величине:

  • • если do/d/ > 0, то аг направлено в ту же сторону, что и вектор о, т. е. ускоренное движение;
  • • если do/d/

Рассмотрим подробнее втопое слагаемое уравнения (2.3.9):

Быстрота изменения направления касательной к траектории (dx/d/) определяется скоростью движения точки по окружности и степенью искривленности траекторий (рис. 2.9, 2.10).

Степень искривленности плоской кривой характеризуется кривизной С. Радиус кривизны г — радиус такой окружности, которая сливается с кривой в данной точке на бесконечно малом ее участке ds.

Центры таких окружностей — центры кривизны т. О и О’.

Рис. 2.10. К выводу нормальной составляющей ускорения, показывающей быстроту изменения направления касательной к траектории

Скорость изменения направления касательной можно выразить как произведение скорости изменения угла на единичный вектор, показывающий направление изменения угла:

здесь п — единичный вектор, направленный перпендикулярно касательной (т) в данной точке, т. е. по радиусу к центру кривизны.

За время At материальная точка перемещается вдоль траектории на расстояние ds в пределе (при At —> 0), центры кривизны О и О’ сливаются и угол поворота Д d dx d r dx i) 2 r

Tогда — = —, следовательно — = — n ; наконец, и — = — n , т. с.

Нормальное ускорение показывает быстроту изменения направления вектора скорости. Модуль нормального ускорения

Центростремительным называют ускорение, когда движение происходит по окружности. А когда движение происходит по произвольной кривой, говорят, нормальное ускорение, перпендикулярное к касательной в любой точке траектории.

Итак, возвращаясь к выражению (2.3.9), можно записать, что суммарный вектор ускорения при движении точки вдоль плоской кривой равен:

На рис. 2.11 изображено взаимное расположение векторов ускорения:

Рис. 2.11. Суммарное ускорение, нормальная и тангенциальная составляющие ускорения

Как видно из этого рисунка, модуль общего ускорения равен:

Рассмотрим несколько предельных (частных) случаев:

  • аТ = 0; ап = 0 — равномерное прямолинейное движение;
  • ах = const п = 0 — равноускоренное прямолинейное движение;
  • ах 0; ап = const — равномерное движение по окружности.

Прямая задача кинематики сводится к определению кинематических характеристик по известному закону движения.

При движении с постоянным ускорением (а = const)

Если и = о ± at (а = const), то

Обратная задача кинематики заключается в нахождении закона движения по известной скорости (ускорению) и начальному кинематическому состоянию.

Пусть нам известно ускорение точки в каждый момент времени.

источник

Проекции скорости точки на оси координат равны первым производным от конечных уравнений движения по времени

Модуль скорости точки определяется формулой:

.

Проекции ускорения точки на оси координат равны первым производным от соответствующих проекций скорости по времени или вторым производным от конечных уравнений движения по времени:

или

где или

Модуль ускорения точки определяется формулой:

.

Естественный способ задания движения точки: задать траекторию точки; выбрать начало отсчета дуг на траектории; задать положительное и отрицательное направления отсчёта дуг; задать закон, выражающий зависимость естественной координаты S от времени – S(t) –

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 8645 — | 7090 — или читать все.

176.59.98.28 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Определение скорости и ускорения точки при координатном способе задания движения

ОПРЕДЕЛЕНИЕ СКОРОСТИ И УСКОРЕНИЯ ТОЧКИ

ПРИ КООРДИНАТНОМ СПОСОБЕ ЗАДАНИЯ ДВИЖЕНИЯ

Найдем, как вычисляются скорость и ускорение точки, если её движение задано уравнениями (3) или (4). Вопрос об определении траектории в этом случае был уже рассмотрен ранее.

Формулы (8) и (10), определяющие значения и , содержат производные по времени от векторов и . В равенствах, содержащих производные от векторов, переход к зависимостям между их проекциями осуществляется с помощью следующей теоремы: проекция производной от вектора на ось, неподвижную в данной системе отсчета, равна производной от проекции дифференцируемого вектора на ту же ось, т. е.

1. Определение скорости точки. Вектор скорости точки = dr̅/dt. Отсюда на основании формул(11), учитывая, что rx = x, ry = y, rz = z, найдем:

где точка над буквой есть символ дифференцирования по времени. Таким образом, проекции скорости точки на координатные оси равны первым производным от соответствующих координат точки по времени.

Зная проекции скорости, найдем ее модуль и направление (т. е. углы α, β, γ, которые вектор образует с координатными осями) по формулам

2. Определение ускорения точки. Вектор ускорения точки = dv̅/dt. Отсюда на основании формул (11) получаем:

т. е. проекции ускорения точки на координатные оси равны первым производным от проекций скорости или вторым производным от соответствующих координат точки по времени. Модуль и направление ускорения найдутся из формул

где α1 , β1 , γ1 — углы, образуемые вектором ускорения с координатными осями.

Итак, если движение точки задано в декартовых прямоугольных координатах уравнениями(3) или (4), то скорость точки определяется по формулам (12) и (13), а ускорение— по формулам (14) и (15). При этом в случае движения, происходящего в одной плоскости, во всех формулах должна быть отброшена проекция на ось z.

В случае же прямолинейного движения, которое задается одним уравнением x = f(t), будет

Равенства (16) и определяют значения скорости и ускорения точки в этом случае.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8498 — | 7332 — или читать все.

176.59.98.28 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Задание движения и траектория

КООРДИНАТНЫЙ СПОСОБ ИЗУЧЕНИЯ ДВИЖЕНИЯ

Движение точки в декартовых координатах считается заданным, если известны координаты точки как непрерывные, дважды дифференцируемые функции времени , т. е. заданы уравнения движения точки в декартовых координатах:

; ; .

Эти уравнения движения есть также уравнения траектории точки в параметрической форме. Параметром является время t. Уравнения траектории в координатной форме получают исключением параметра t.

, .

Разложим радиус-вектор и скорость точки на составляющие, параллельные осям координат. Получим

; , (1)

где х, у, z-координаты точки М; — единичные векторы осей координат; — проекции скорости на оси координат.

Учитывая (1), согласно определению скорости, имеем

, (2)

так как не изменяются при движении точки М. Точки над х, у, z означают их производные по времени. Сравнивая (1) и (2), получаем для проекций скорости на декартовы оси координат следующие формулы:

; ; .

Проекция скорости точки на какую-либо координатную ось равна первой производной по времени от соответствующей координаты этой точки. По проекциям определяют числовое значение (модуль) скорости и косинусы углов вектора скорости с осями координат:

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8498 — | 7332 — или читать все.

176.59.98.28 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

9 июня 8-часовой тренинг ЕГЭ по биологии и информатике за 149 рублей.

30 мая Решения вчерашних ЕГЭ по математике

− Examer из Таганрога;
− Учитель Думбадзе
из школы 162 Кировского района Петербурга.

Наша группа ВКонтакте
Мобильные приложения:

3.1. Равнопеременное движение по прямой.

3.1.1. Равнопеременное движение по прямой — движение по прямой с постоянным по модулю и направлению ускорением:

3.1.2. Ускорение () — физическая векторная величина, показывающая, на сколько изменится скорость за 1 с.

где — начальная скорость тела, — скорость тела в момент времени t.

В проекции на ось Ox:

где — проекция начальной скорости на ось Ox, — проекция скорости тела на ось Ox в момент времени t.

Знаки проекций зависят от направления векторов и оси Ox.

3.1.3. График проекции ускорения от времени.

При равнопеременном движении ускорение постоянно, поэтому будет представлять собой прямые линии, параллельные оси времени (см. рис.):

Значение ускорения: чем дальше от оси времени лежит прямая, тем больше модуль ускорения

3.1.4. Скорость при равнопеременном движении.

В проекции на ось Ox:

Для равноускоренного движения:

Для равнозамедленного движения:

3.1.5. График проекции скорости в зависимости от времени.

График проекции скорости от времени — прямая линия.

Направление движения: если график (или часть его) находятся над осью времени, то тело движется в положительном направлении оси Ox.

Значение ускорения: чем больше тангенс угла наклона (чем круче поднимается вверх или опускает вниз), тем больше модуль ускорения; где — изменение скорости за время

Пересечение с осью времени: если график пересекает ось времени, то до точки пересечения тело тормозило (равнозамедленное движение), а после точки пересечения начало разгоняться в противоположную сторону (равноускоренное движение).

3.1.6. Геометрический смысл площади под графиком в осях

Площадь под графиком, когда на оси Oy отложена скорость, а на оси Ox — время — это путь, пройденный телом.

На рис. 3.5 нарисован случай равноускоренного движения. Путь в данном случае будет равен площади трапеции:

(3.9)

3.1.7. Формулы для расчета пути

(3.10)

(3.12)

(3.11)

(3.13)

(3.14)

Все формулы, представленные в таблице, работают только при сохранении направления движения, то есть до пересечения прямой с осью времени на графике зависимости проекции скорости от времени.

Если же пересечение произошло, то движение проще разбить на два этапа:

до пересечения (торможение):

После пересечения (разгон, движение в обратную сторону)

В формулах выше — время от начала движения до пересечения с осью времени (время до остановки), — путь, который прошло тело от начала движения до пересечения с осью времени, — время, прошедшее с момента пересечения оси времени до данного момента t, — путь, который прошло тело в обратном направлении за время, прошедшее с момента пересечения оси времени до данного момента t, — модуль вектора перемещения за все время движения, L — путь, пройденный телом за все время движения.

3.1.8. Перемещение за -ую секунду.

За время тело пройдет путь:

За время тело пройдет путь:

Тогда за -ый промежуток тело пройдет путь:

За промежуток можно принимать любой отрезок времени. Чаще всего с.

Если то

Тогда за 1-ую секунду тело проходит путь:

Если внимательно посмотрим, то увидим, что и т. д.

Таким образом, приходим к формуле:

Словами: пути, проходимые телом за последовательные промежутки времени соотносятся между собой как ряд нечетных чисел, и это не зависит от того, с каким ускорением движется тело. Подчеркнем, что это соотношение справедливо при

3.1.9. Уравнение координаты тела при равнопеременном движении

Знаки проекций начальной скорости и ускорения зависят от взаимного расположения соответствующих векторов и оси Ox.

Для решения задач к уравнению необходимо добавлять уравнение изменения проекции скорости на ось:

3.2. Графики кинематических величин при прямолинейном движении

3.3. Свободное падение тела

Под свободным падением подразумевается следующая физическая модель:

1) Падение происходит под действием силы тяжести:

2) Сопротивление воздуха отсутствует (в задачах иногда пишут «сопротивлением воздуха пренебречь»);

3) Все тела, независимо от массы падают с одинаковым ускорением (иногда добавляют — «независимо от формы тела», но мы рассматриваем движение только материальной точки, поэтому форма тела уже не учитывается);

4) Ускорение свободного падения направлено строго вниз и на поверхности Земли равно (в задачах часто принимаем для удобства подсчетов);

3.3.1. Уравнения движения в проекции на ось Oy

В отличии от движения по горизонтальной прямой, когда далеко не всех задач происходит смена направления движения, при свободном падении лучше всего сразу пользоваться уравнениями, записанными в проекциях на ось Oy.

Уравнение координаты тела:

Уравнение проекции скорости:

Как правило, в задачах удобно выбрать ось Oy следующим образом:

Ось Oy направлена вертикально вверх;

Начало координат совпадает с уровнем Земли или самой нижней точкой траектории.

При таком выборе уравнения и перепишутся в следующем виде:

3.4. Движение в плоскости Oxy.

Мы рассмотрели движение тела с ускорением вдоль прямой. Однако этим равнопеременное движение не ограничивается. Например, тело, брошенное под углом к горизонту. В таких задачах необходимо учитывать движение сразу по двум осям:

Или в векторном виде:

И изменение проекции скорости на обе оси:

3.5. Применение понятия производной и интеграла

Мы не будем приводить здесь подробное определение производной и интеграла. Для решения задач нам понадобятся лишь небольшой набор формул.

где A, B и то есть постоянные величины.

Теперь посмотрим, как понятие производной и интеграла применимо к физическим величинам. В математике производная обозначается «’», в физике производная по времени обозначается «∙» над функцией.

то есть скорость является производной от радиус-вектора.

Для проекции скорости:

то есть ускорение является производной от скорости.

Для проекции ускорения:

Таким образом, если известен закон движения то легко можем найти и скорость и ускорение тела.

Теперь воспользуемся понятием интеграла.

то есть, скорость можно найти как интеграл по времени от ускорения.

то есть, радиус-вектор можно найти, взяв интеграл от функции скорости.

Таким образом, если известна функция то легко можем найти и скорость, и закон движения тела.

Константы в формулах определяются из начальных условий — значения и в момент времени

3.6. Треугольник скоростей и треугольник перемещений

3.6.1. Треугольник скоростей

В векторном виде при постоянном ускорении закон изменения скорости имеет вид (3.5):

Эта формула означает, что вектор равен векторной сумме векторов и Векторную сумму всегда можно изобразить на рисунке (см. рис.).

В каждой задаче, в зависимости от условий, треугольник скоростей будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.

3.6.2. Треугольник перемещений

В векторном виде закон движения при постоянном ускорении имеет вид:

При решении задачи можно выбирать систему отсчета наиболее удобным образом, поэтому не теряя общности, можем выбрать систему отсчета так, что то есть начало системы координат помещаем в точку, где в начальный момент находится тело. Тогда

то есть вектор равен векторной сумме векторов и Изобразим на рисунке (см. рис.).

Как и в предыдущем случае в зависимости от условий треугольник перемещений будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.

источник

Читайте также:  Как найти длину отрезка на координатной прямой