Меню Рубрики

Правило как найти часть от целого числа

Разделы: Математика

Тема урока: «Нахождение части целого и целого по его части».

Цель урока:

  1. Научиться находить дробь от числа и число по его дроби.
  2. Обобщить понятие обыкновенной дроби и действий с обыкновенными дробями.

Оборудование: Мультимедийный проектор, презентация Power Point (Приложение).

I. Организационный момент

Учащиеся рассаживаются по группам (5-6 человек). Можно предложить провести диагностику своего настроения на этапах урока. Каждому ученику дается карточка, на которой он выделяет «характер» его настроения.

II. Актуализация знаний

Мы уже знакомы с понятием обыкновенной дроби.
– Что показывает числитель дроби? (На сколько частей разделили целое).
– Что показывает знаменатель дроби? (Сколько частей взяли).

– Рассмотрите рисунок и ответьте на вопросы:

  • Что означают дроби (На сколько частей разделили фигуру и какую часть закрасили определенным цветом).
  • На каком свойстве обыкновенных дробей основаны первое и второе равенства? (Основное свойство дроби).

Учащимся предлагается воспроизвести его.

III. Устный счет. (Лучший счетчик)

Каждой команде на экране предлагается задание. Команды поочередно выполняют задание.

Подводится итог – какая команда является лучшим счетчиком.

IV. Диктант

Диктант проводится с последующей самопроверкой . Возможно выполнение под копирку, один экземпляр учащиеся сдают учителю на проверку.

1. Вместо х вставить пропущенное число:

2. Сократить дробь:

3. Расположить дроби в порядке убывания:

4. Выполнить действия:

5. На островах Тихого океана живут черепахи – гиганты. Они такой величины, что дети могут кататься, сидя у них на панцире. Узнать название самой крупной в мире черепахи поможет нам следующее задание.

После сдачи решения, учащиеся проверяют ответы.

V. Новый материал

Учитель предлагает решить задачи (на их обдумывание дается минут 5 – 7)

1. На ветке сидело 12 птиц. Затем из них улетело. Сколько птиц улетело?

2. В Вашем классе по математике за третью четверть получили отметку «5» 6 человек. Это составляет от числа всех учащихся в классе. Сколько учащихся в классе?

Затем сверяется решение, которое показывается на слайде.

1 способ: 12 : 3 2 = 8 (птиц)

2 способ: 12 = 8 (птиц)

2 задача. 6 : = 6 = 34 (чел.)

Учитель обращает внимание на то, что можно выделить два типа задач:

Нахождение дроби от числа Нахождение числа по его дроби

Далее проговаривается правило.

1. Чтобы найти часть от числа, выраженную дробью, нужно это число умножить на данную дробь.
2. Чтобы найти число по его части, выраженной дробью, нужно разделить на эту дробь число, ей соответствующее.

Учащимся предлагается заучить это правило прямо в классе и в парах пересказать друг другу.

Учитель акцентирует внимание на следующее: для тех, кто затрудняется в определении типа задачи, советую обращать внимание на предлоги что, это. Эти предлоги встречаются в задачах на нахождение числа по его дроби.

VI. Закрепление нового материала

На слайде условие шести задач и учащимся предлагается рассортировать их в две колонки по типам.

1. Магазин принял для продажи 156 кг рыбы. 1/3 всей рыбы составил карп. Сколько кг карпа получил магазин?
2. Провели 18 опытов, это составило 2/9 всей серии опытов. Сколько опытов надо провести?
3. Учитель проверил 20 тетрадей. Это составило 4/5 всех тетрадей. Сколько всего тетрадей надо проверить учителю?
4. Из 72 пятиклассников 3/ 8 занимаются легкой атлетикой. Сколько учащихся занимаются этим видом спорта?
5. Для выставки отобрали 30 картин. Это составило 2/3 имеющихся в музее картин. Сколько картин взято на выставку?
6. От веревки, длиной 18 м отрезали 3/4 ее длины. Сколько метров веревки осталось?

Читайте также:  Можно ли подать на алименты если не расписаны

В итоге должно получиться:

1. Магазин принял для продажи 156 кг рыбы. 1/3 всей рыбы составил карп. Сколько кг карпа получил магазин?
4. Из 72 пятиклассников 3/ 8 занимаются легкой атлетикой. Сколько учащихся занимаются этим видом спорта?
6. От веревки, длиной 18 м отрезали 3/4 ее длины. Сколько метров веревки осталось?
2. Провели 18 опытов, это составило 2/9 всей серии опытов. Сколько опытов надо провести?
3. Учитель проверил 20 тетрадей. Это составило 4/5 всех тетрадей. Сколько всего тетрадей надо проверить учителю?
5. Для выставки отобрали 30 картин. Это составило 2/3 имеющихся в музее картин. Сколько картин взято на выставку?

Далее учитель предлагает учащимся самим придумать по одной задачи на каждый тип. Поочередно несколько человек зачитывают задачи, а класс определяет к какому типу принадлежит задача.

VII. Итог урока

Учитель возвращает учащихся к цели урока, предлагает выделить два типа задач на дроби и алгоритмы их решения. Собираются листочки с диагностикой настроения.

VIII. Домашнее задание: П. 9.6, № 1050, 1058, 1060.

источник

Для решения данного задания, вспомним, что Чтобы найти часть х от целого а, надо число а, соответствующее целому, разделить на знаменатель m и результат умножить на числитель k дроби, которая выражает эту часть. Например вычислим чему равна 1/4 часть от числа 20.

Итак, пусть нам дано некоторое целое число a. Нам необходимо найти половину от этого числа. Сделать это можно с помощью обыкновенных дробей:

  • Обозначим целое за единицу, тогда половина от единицы — это 1/2. Значит нам надо найти 1/2 от числа a.
  • Чтобы найти 1/2 от числа a, мы должны умножить число a на часть, которую нам необходимо найти, то есть выполнить действие: a * 1/2 = a/2. То есть половина от числа a — это a/2.
  • При этом, если мы ищем часть от целого числа, то результат будет меньше, чем исходное число.

Могут быть разные задачи на нахождении части от целого: если необходимо найти, например, четверть от числа a, то надо a * 1/4 = a/4. Если требуется найти 1/8 от числа a, то надо a * 1/8 = a/8. Нахождение любой части от целого выполняется умножением данного целого числа на часть, которую требуется найти.
Рассмотрим пример.

Нам дано целое — число 75. Нам необходимо найти от него третью часть, иначе — необходимо найти 1/3. Выполним действие умножение целого на часть: 75 * 1/3 = 25. Значит третья часть от числа 75 — это число 25. Можно сказать и так: число 25 меньше числа 75 в три раза. Или: число 75 больше числа 25 в три раза.

Читайте также:  В каком городе родился иисус христос ответ

источник

Если известно сколько составляет часть от целого, то по известной части можно «восстановить» целое.

Для этого пользуемся правилом нахождения целого (числа) по его дроби (части).

Чтобы найти число по его части, выраженной дробью, нужно данное число разделить на дробь.

Пример. Рассмотрим задачу.

Поезд прошёл 240 км, что составило

15
23

всего пути. Какой путь должен пройти поезд?

Решение. 240 км — часть всего пути. Эти же километры выражены дробью 15/23 от всего пути. Знаменатель дроби говорит о том, что весь путь разделён на 23 части, и 15 таких частей составляют 240 км (числитель дроби равен 15 ).
Значит, можно найти, сколько составляет

1
23

часть пути.

Весь путь (целое) всегда обозначаем за единицу, которую можно выразить дробью

23
23

.

Значит, чтобы найти весь путь ( 23 части, каждая из которых по 16 км) нужно:

Кратко запись решения такой задачи можно сделать следующим образом.

Ответ: поезд должен пройти 368 км.

Часто задачи данного типа сложнее, чем рассмотренная задача выше, и более сложные задачи приходиться решать в несколько действий.

При подготовке к диктанту по английскому языку Оля выучила четверть всех слов , заданных учителем. Если бы она выучила ещё 4 слова , то была бы выучена треть всех слов . Сколько всего слов надо было выучить Оле?

Решение. Как обычно подчеркнём в условии задачи все важные данные.

Как видно из условия, четыре невыученных слова — это часть от всех слов, которую можно найти в виде разности дробей.

Такую часть всех слов составляют 4 слова.

Итак, 4 слова — это

1
12

от всех слов (целого). Теперь по правилу нахождения числа по его части данное числовое значение разделим на соответствующую ему дробь

1
12

.

Ответ: всего 48 слов надо было выучить к диктанту.

источник

Как найти целое, если известна его часть?

Например, 3/8 торта весит 300 грамм. Как узнать, сколько весит весь торт?

Нахождение целого по его части

Если у нас известна какая-либо часть (доля) от целого, то можно всегда «восстановить» целое.

При этом нужно помнить, что часть от целого числа может быть выражена либо в виде дроби (обычно обыкновенной), либо в виде процента.

Рассмотрим оба случая.

1) Часть числа — это обыкновенная дробь.

В этом случае для нахождения целого нужно число, соответствующее данной части, разделить на дробь.

Для того, чтобы число разделить на обыкновенную дробь, нужно умножить его на знаменатель дроби и разделить на числитель.

Специалист отдела кадров получил премию 2000 рублей, что составляет 1/15 часть от его месячной зарплаты. Требуется узнать, сколько составляет зарплата у данного сотрудника.

Зарплата = 2000 / (1/15) = 2000 * 15 = 30000 рублей.

Значит, сотрудник получает зарплату 30000 рублей в месяц.

Было засеяно пшеницей 12 гектаров поля, что составляет 3/5 от его общей площади. Нужно посчитать, чему равна площадь поля.

Площадь поля = 12 / (3/5) = 12 * (5/3) = 20 гектаров.

2) Часть числа представлена в процентах.

Если доля от целого является процентом, а не обыкновенной дробью, то подобные задачи можно решать с помощью составления пропорции.

Цена апельсинов со скидкой равна 120 рублей, величина скидки равна 20%. Нужно узнать, сколько стоили апельсины изначально.

Так как скидка = 20%, то от исходной цены апельсинов осталось 100% — 20% = 80%.

x = 120 / 0,8 = 150 рублей.

Таким образом, до скидки апельсины стоили 150 рублей.

источник

Объясните, пожалуйста,

— как находить целое, если известна его часть.

— как находить часть от целого.

в каких случаях нужно делить на знаменатель и умножать на числитель, в каких случаях наоборот.

Если не сложно, то с примерами.

Начнем с нахождения неизвестной части от известного целого.

Как правило, целое принимается за единицу. Например, — необходимо разделить поровну торт, массой 2 кг на 8 человек. Найти массу одного кусочка.

Каждый присутствующий получит: 1 : 8 = 1/8 от всего торта. Тогда масса одного кусочка: 2 * 1/8 = 2 : 8 = 1/4 = 0,25 (кг) = 250 (г)

Таким образом, для нахождения части от целого необходимо целое разделить на количество частей (в данном случае 8), или умножить целое на дробь, выражающую эту часть (в данном случае 1/8).

В решении задач часто возникают ситуации, когда вопрос нахождения части от целого не ограничивается простым делением целого на количество частей. Например:

В свежих фруктах находится 60% воды. Найти массу сухих фруктов, получившихся из 12 кг свежих.

Так как воды в свежих фруктах 60% или 6/10 от всего количества, то сухих фруктов получится: 1 — 6/10 = 4/10 от всей массы свежих фруктов. Так как вся масса — 12 кг, то масса сухих фруктов:

12 * 4/10 = 48/10 = 4,8 (кг)

Следует обратить внимание на то, что при умножении числа на дробь безразлично, в каком порядке выполнять действия: можно умножить число на числитель, а потом разделить полученный результат на знаменатель, или можно число разделить на знаменатель, а потом полученный результат умножить на числитель:

12 * 4/10 = 12 * 4 : 10 = 12 : 10 * 4 = 1,2 * 4 = 4,8

Теперь рассмотрим, как находить целое, если известна его часть.

Возьмем, для примера, задачу с сухофруктами и изменим условие: Известно, что при сушке свежих фруктов получилось 7,2 кг сухих. Определить массу свежих фруктов, если известно, что масса воды составляет в них 60% от веса.

Так как 7,2 кг — это фрукты без воды, то от полной массы свежих фруктов 7,2 кг составляют: 100 — 60 = 40% или 0,4.

Тогда масса свежих фруктов: 7,2 : 0,4 = 7,2 : 4/10 = 7,2 * 10/4 = 72/4 = 18 (кг)

Таким образом, чтобы найти целое число по значению данной его части, эту величину делят на дробь, которая выражает её часть.

Формулировки с числителями и знаменателями несколько запутаны и, часто, не поддаются логическому осмыслению. Гораздо проще запомнить через действия с дробями: в случае нахождения части от целого, — умножение на дробь, в случае нахождения целого от части, — деление на дробь. А то, что деление на дробь равнозначно умножению на дробь, обратную данной, на мой взгляд, значительно проще для понимания..))

источник