Меню Рубрики

Количество электронов в атоме определяется

1,5 для наиболее тяжелых ядер.

Для описания свойств атома и его структуры используется модель, известная под названием «Модель атома по Бору». В соответствии с ней структура атома напоминает солнечную систему — тяжелый центр (ядро) находится в центре, а более легкие частицы движутся по орбите вокруг него. Нейтроны и протоны образуют положительно заряженное ядро, а отрицательно заряженные электроны движутся вокруг центра, притягиваясь к нему электростатическими силами.

Элементом называют вещество, состоящее из атомов одного типа, он определяется числом протонов в каждом из них. Элементу присваивают свое имя и символ, например, водород (H) или кислород (О). Химические свойства элемента зависят от числа электронов и, соответственно, числа протонов, содержащихся в атомах. Химические характеристики атома не зависят от числа нейтронов, так как нейтроны не имеют электрического заряда. Однако их число влияет на стабильность ядра, изменяя общую массу атома.

Изотопами называют атомы отдельных элементов с различным числом нейтронов. Данные атомы химически идентичным, однако обладают разной массой, также они отличаются своей способностью испускать излучение.

Атомный номер (Z) — это порядковый номер химического элемента в периодической системе Менделеева, он определяется числом протонов в ядре. Каждый атом характеризуется атомным номером и массовым числом (А), которое равно суммарному числу протонов и нейтронов в ядре.

Элемент может иметь атомы с различным числом нейтронов, но количество протонов остается неизменным и равно числу электронов нейтрального атома. Для того, чтобы определить, сколько протонов содержится в ядре изотопа, достаточно посмотреть на его атомный номер. Число протонов равно номеру соответствующего химического элемента в периодической таблице Менделеева.

В качестве примера можно рассмотреть изотопы водорода. В природе наиболее распространены атомы водорода с одним протоном и без нейтронов. В то же время существуют изотопы водорода с одним или двумя нейтронами, они имеют соответствующие названия. Однако у них у всех один протон, что соответствует порядковому номеру водорода в периодической таблице. Изотоп водорода с одним нейтроном и массовым числом 2 называют дейтерием или тяжелым водородом, он стабилен. Тритий, изотоп водорода с массовым числом 3 и двумя нейтронами, радиоактивен. Его иногда называют сверхтяжелым водородом, а ядро трития — тритоном.

источник

Электроны в атоме распределяются по орбиталям таким образом, что энергия атома оказывается наименьшей.

Каждой атомной орбитали отвечает определенная энергия. Порядок следования АО по энергии определяется двумя правилами Клечковского:

1) энергия электрона в основном определяется значениями главного (n) и орбитального (l) квантовых чисел, поэтому сначала электронами заполняются те подуровни, для которых сумма (n + l) меньше.

Например, можно было бы предположить, что 3d-подуровень по энергии ниже, чем 4s. Однако, согласно правилу Клечковского, энергия 4s-состояния меньше, чем 3d, так как для 4s сумма (n + l) = 4 + 0 = 4, а для 3d — (n + l) = 3 + 2 = 5.

2) В случае, если сумма (n + l) для двух подуровней одинакова (например, для 3d- и 4p-подуровней эта сумма равна 5), сначала заполняется электронами уровень с меньшим n.Поэтому формирование энергетических уровней атомов элементов четвертого периода происходит в такой последовательности: 4s — 3d — 4p. Например:

21 Sc 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 , 31 Ga 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 1

Таким образом, с учетом правил Клечковского энергия атомных орбиталей возрастает согласно ряду

на одной АО — 2электрона;

— на подуровне l — 2(2l+1)электрона;

— на уровне n — 2n 2 электронов.

по энергетическим уровням, подуровням и орбиталям

Энергетический уровень Главное квантовоечисло Энергетический подуровень Атомные орбитали Максимальное число электронов
подуровень уровень
1 s (l = 0)
s (l = 0)
2 p (l = 1)
s (l = 0)
3 p (l = 1)
d (l =2)

4. Два правила Хунда описывают порядок заполнения электронами АО одного подуровня:

Первое правило:в данном подуровне электроны стремятся заполнять энергетические состояния (АО) таким образом, чтобы сумма их спинов по абсолютной величине была максимальна. При этом энергия системы минимальна.

Например, рассмотрим электронную конфигурацию атома углерода. Атомный номер этого элемента равен 6. Это означает, что в атоме 6 электронов и они расположены на 2-х энергетических уровнях (атом углерода находится во втором периоде), т.е. 1s 2 2s 2 2p 2 . Графически 2р-подуровень можно изобразить тремя способами:

m0 0 +1 0 -1 0 0 +1 0 -1 0 0 +1 0 -1

Сумма спинов в варианте а равна нулю. В вариантах б и в сумма спинов равна: ½ +½ = 1 (два спаренных электрона в сумме всегда дают ноль, поэтому учитываем неспаренные электроны).

При выборе между вариантами бив руководствуемся вторым правилом Хунда: минимальной энергией обладает состояние с максимальной (по абсолютной величине) суммой магнитных квантовых чисел.

В соответствии с правилом Гунда, преимуществом обладает вариант б (сумма |1+ 0| равна 1) , так как в варианте в сумма |+1–1| равна 0.

Определим, например, электронную формулу элемента ванадия (V). Так как его атомный номер Z = 23, то нужно разместить на подуровнях и уровнях (их четыре, так как ванадий находится в четвертом периоде) 23 электрона. Последовательно заполняем: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 3 (подчеркнуты незаконченные уровни и подуровни). Размещение электронов на 3d –АО по правилу Гунда будет:

Для селена (Z = 34) полная электронная формула: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 4 ,незаконченным является четвёртый уровень.

Заполнение этого подуровня по правилу Гунда: 4p

Особую роль в химии играют электроны последних незаполненных уровней и подуровней, которые называются валентными (в формулах V, Se – подчеркнуты). Например, у ванадия это электроны незаполненного четвертого уровня 4s 2 и незаполненного подуровня 3d 3 , т.е. валентными будет 5 электронов 4s 2 3d 3 ; у селена 6 электронов — 4s 2 4p 4 .

По названию последнего заполняемого подуровня элементы называются s-элементами, р-элементами, d-элементами и f-элементами.

Найденные по описанным правилам формулы валентных электронов называются каноническими. В действительности реальные формулы, определяемые из эксперимента или квантовомеханическим расчетом, несколько отличаются от канонических, т.к. правила Клечковского, принцип Паули и правила Гунда иногда нарушаются. Причины этих нарушений рассмотрены ниже.

Пример 1. Записать электронную формулу атома элемента с атомным номером 16. Валентные электроны изобразить графически и один из них охарактеризовать квантовыми числами.

Решение. Атомный номер 16 имеет атом серы. Следовательно, заряд ядра равен 16, в целом атом серы содержит 16 электронов. Электронная формула атома серы записывается: 1s 2 2s 2 2p 6 3s 2 3p 4 . (Подчеркнуты валентные электроны).

Графическая формула валентных электронов:

Состояние каждого электрона в атоме характеризуется четырьмя квантовыми числами. Электронная формула дает значения главного квантового числа и орбитального квантового числа. Так, для отмеченного электрона состояние 3p означает, что n = 3 и l = 1(р). Графическая формула дает значение еще двух квантовых чисел — магнитного и спинового. Для отмеченного электрона m = -1 и s = 1 /2.

Пример 2. Охарактеризовать валентные электроны атома скандия четырьмя квантовыми числами.

Решение. Скандий находится в 4-м периоде, т.е. последний квантовый слой — четвертый, в 3-й группе, т.е. три валентных электрона.

Электронная формула валентных электронов: 4s 2 3d 1 .

Графическая формула:

m0 +2 +1 0 -1 -2

источник

Распределение характеризуется следующими правилами:

принципом наименьшей энергии и правилом Клечковского.

По принципу Паули в атоме не может быть двух и более электронов с одинаковым значением всех четырех квантовых чисел. Основываясь на принципе Паули можно установить максимальную емкость каждого энергетического уровня и подуровня.

Магнитное квантовое число, m

Спиновое квантовое число,s

Таким образом, максимальное количество электронов на:

В пределах квантового уровня n электрон может принимать значения 2n 2 различных состояний, что было установлено опытным путем с помощью спектрального анализа.

Правило Гунда: в каждом подуровне электроны стремятся занять максимальное число свободных энергетических ячеек, чтобы суммарный спин имел наибольшее значение.

правильно неправильно неправильно

s = +1/2+1/2+1/2=1,5 s =-1/2+1/2+1/2=0,5 s = -1/2+1/2-1/2=-0,5

Принцип наименьшей энергии и правило Клечковского: электроны в первую очередь заселяют квантовые орбитали с минимальной энергией. Так как запас энергии в атоме определяется значением суммы главного и орбитального квантовых чисел (n + ℓ), то сначала электроны заселяют орбитали, для которых сумма (n + ℓ) наименьшая.

Например: сумма (n + ℓ) для 3d — подуровня равна n = 3, l = 2, следовательно, (n + ℓ) = 5; для 4s-подуровня: n = 4, ℓ = 0, следовательно, (n + ℓ) = 4. В этом случае в первую очередь заполняется 4s-подуровень и только потом 3d-подуровень.

Если суммарные значения энергии равны, то заселяется тот уровень, который находится ближе к ядру.

Например: для 3d: n = 3, ℓ = 2, (n + ℓ) = 5;

Электронная формула — это графическое изображение распределения электронов по уровням и подуровням в атоме. Существует два вида формул:

при написании используются только два квантовых числа: n и ℓ. Главное квантовое число указывается цифрой перед буквенным обозначением подуровня. Орбитальное квантовое число указывается буквой s, p, d или f. Количество электронов указывается цифрой как показатель степени.

Например: +1H: 1s 1 ; +4Be: 1s 2 2s 2 ;

+2He: 1s 2 ; +10Ne: 1s 2 2s 2 2p 6 ;

+3Li: 1s 2 2s 1 ; +14Si: 1s 2 2s 2 2p 6 3s 2 3p 6 .

То есть соблюдается последовательность

графическая электронная формула — используются все 4 квантовых числа — это распределение электронов по квантовым ячейкам. Главное квантовое число изображается слева, орбитальное – внизу буквой, магнитное – количество клеток, спиновое – направление стрелок.

8O:…2s 2 2p 4

Графическая формула используется для записи только валентных электронов.

Рассмотрим составление электронных формул элементов по периодам.

I период содержит 2 элемента, у которых полностью заселен электронами I квантовый уровень и s-подуровень (максимальное количество электронов на подуровне — 2):

Элементы, у которых последним заполняется s-подуровень, относят к s-семейству и называют s-элементами.

У элементов II периода идет заполнение II квантового уровня, s- и p-подуровня (максимальное количество электронов на р-подуровне — 8).

Читайте также:  Что такое маслины и чем они отличаются от оливок

3Li: 1s 2 2s 1 ; 4 Be: 1s 2 2s 2 ;

5B: 1s 2 2s 2 2p 1 ; 10Ne: 1s 2 2s 2 2p 6

Элементы, у которых последним заполняется р-подуровень, относят к р-семейству и называют р-элементами.

У элементов III периода начинается формирование III квантового уровня. У Na и Mg идет заселение электронами 3s-подуровня. У элементов от 13Al до 18Ar заселяется 3p-подуровень; 3d-подуровень остается незаполненным, так как обладает более высоким уровнем энергии, чем 4s-подуровень и не заполняется у элементов III периода.

3d-подуровень начинает заполняться у элементов IV периода, а 4d — у элементов V периода (в соответствии с последовательностью):

19K: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 ; 20Ca: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 ;

21Sс: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 ; 25Mn: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5 ;

33As: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 3 ; 43Tc: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 5

Элементы, у которых последним заполняется d-подуровень, относят к d-семейству и называют d-элементами.

4f заполняется только после 57 элемента VI периода:

57La : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 5s 2 4d 10 5p 6 6s 2 5d 1 ;

58Сe: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 5s 2 4d 10 5p 6 6s 2 5d 1 4f 1 ;

Заселение электронами V квантового уровня идет аналогично IV периоду. Таким образом, соблюдается показанная ранее последовательность заселения электронами уровней и подуровней:

заселение электронами нового квантового уровня всегда начинается с s-подуровня. У элементов данного периода заселяются электронами только s и p подуровни внешнего квантового уровня;

заселение d-подуровня запаздывает на I период; 3d-подуровень заполняется у элементов IV периода, 4d – подуровень у элементов V периода и т.д.;

заселение электронами f подуровня запаздывает на 2 периода; 4f-подуровень заселяется у элементов VI периода, 5f – подуровень у элементов VII периода и т.д.

источник

Распределение характеризуется следующими правилами:

принципом наименьшей энергии и правилом Клечковского.

По принципу Паули в атоме не может быть двух и более электронов с одинаковым значением всех четырех квантовых чисел. Основываясь на принципе Паули можно установить максимальную емкость каждого энергетического уровня и подуровня.

Магнитное квантовое число, m

Спиновое квантовое число,s

Таким образом, максимальное количество электронов на:

В пределах квантового уровня n электрон может принимать значения 2n 2 различных состояний, что было установлено опытным путем с помощью спектрального анализа.

Правило Гунда: в каждом подуровне электроны стремятся занять максимальное число свободных энергетических ячеек, чтобы суммарный спин имел наибольшее значение.

правильно неправильно неправильно

s = +1/2+1/2+1/2=1,5 s =-1/2+1/2+1/2=0,5 s = -1/2+1/2-1/2=-0,5

Принцип наименьшей энергии и правило Клечковского: электроны в первую очередь заселяют квантовые орбитали с минимальной энергией. Так как запас энергии в атоме определяется значением суммы главного и орбитального квантовых чисел (n + ℓ), то сначала электроны заселяют орбитали, для которых сумма (n + ℓ) наименьшая.

Например: сумма (n + ℓ) для 3d — подуровня равна n = 3, l = 2, следовательно, (n + ℓ) = 5; для 4s-подуровня: n = 4, ℓ = 0, следовательно, (n + ℓ) = 4. В этом случае в первую очередь заполняется 4s-подуровень и только потом 3d-подуровень.

Если суммарные значения энергии равны, то заселяется тот уровень, который находится ближе к ядру.

Например: для 3d: n = 3, ℓ = 2, (n + ℓ) = 5;

Электронная формула — это графическое изображение распределения электронов по уровням и подуровням в атоме. Существует два вида формул:

при написании используются только два квантовых числа: n и ℓ. Главное квантовое число указывается цифрой перед буквенным обозначением подуровня. Орбитальное квантовое число указывается буквой s, p, d или f. Количество электронов указывается цифрой как показатель степени.

Например: +1H: 1s 1 ; +4Be: 1s 2 2s 2 ;

+2He: 1s 2 ; +10Ne: 1s 2 2s 2 2p 6 ;

+3Li: 1s 2 2s 1 ; +14Si: 1s 2 2s 2 2p 6 3s 2 3p 6 .

То есть соблюдается последовательность

графическая электронная формула — используются все 4 квантовых числа — это распределение электронов по квантовым ячейкам. Главное квантовое число изображается слева, орбитальное – внизу буквой, магнитное – количество клеток, спиновое – направление стрелок.

8O:…2s 2 2p 4

Графическая формула используется для записи только валентных электронов.

Рассмотрим составление электронных формул элементов по периодам.

I период содержит 2 элемента, у которых полностью заселен электронами I квантовый уровень и s-подуровень (максимальное количество электронов на подуровне — 2):

Элементы, у которых последним заполняется s-подуровень, относят к s-семейству и называют s-элементами.

У элементов II периода идет заполнение II квантового уровня, s- и p-подуровня (максимальное количество электронов на р-подуровне — 8).

3Li: 1s 2 2s 1 ; 4 Be: 1s 2 2s 2 ;

5B: 1s 2 2s 2 2p 1 ; 10Ne: 1s 2 2s 2 2p 6

Элементы, у которых последним заполняется р-подуровень, относят к р-семейству и называют р-элементами.

У элементов III периода начинается формирование III квантового уровня. У Na и Mg идет заселение электронами 3s-подуровня. У элементов от 13Al до 18Ar заселяется 3p-подуровень; 3d-подуровень остается незаполненным, так как обладает более высоким уровнем энергии, чем 4s-подуровень и не заполняется у элементов III периода.

3d-подуровень начинает заполняться у элементов IV периода, а 4d — у элементов V периода (в соответствии с последовательностью):

19K: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 ; 20Ca: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 ;

21Sс: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 ; 25Mn: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5 ;

33As: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 3 ; 43Tc: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 5

Элементы, у которых последним заполняется d-подуровень, относят к d-семейству и называют d-элементами.

4f заполняется только после 57 элемента VI периода:

57La : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 5s 2 4d 10 5p 6 6s 2 5d 1 ;

58Сe: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 5s 2 4d 10 5p 6 6s 2 5d 1 4f 1 ;

Заселение электронами V квантового уровня идет аналогично IV периоду. Таким образом, соблюдается показанная ранее последовательность заселения электронами уровней и подуровней:

заселение электронами нового квантового уровня всегда начинается с s-подуровня. У элементов данного периода заселяются электронами только s и p подуровни внешнего квантового уровня;

заселение d-подуровня запаздывает на I период; 3d-подуровень заполняется у элементов IV периода, 4d – подуровень у элементов V периода и т.д.;

заселение электронами f подуровня запаздывает на 2 периода; 4f-подуровень заселяется у элементов VI периода, 5f – подуровень у элементов VII периода и т.д.

источник

1. Количество электронов в атоме определяется

3) числом энергетических уровней

4) величиной относительной атомной массs

2 . Ион, в составе которого 16 протонов и 18 электронов, имеет заряд

3. Внешний энергетический уровень атома элемента, образующего высший оксид состава ЭОз, имеет формулу

1) ns2np1 2) ns2nр2 3) nз2nр3 4) ns2nр4

4. Конфигурация внешнего электронного слоя атома серы в невозбужденном состоянии

1) 4s2 2) 3s23р6 3) 3s23р4 4) 4s24р4

5. Электронную конфигурацию 1s22s22p63s23p64s1 в основном состоянии имеет атом

6. Восьмиэлектронную внешнюю оболочку имеет ион

7. Двухэлектронную внешнюю оболочку имеет ион

8. Число электронов в ионе железа Fe2+ равно

9. Электронная конфигурация Is22s22p63s23p6 соответствует иону

10. В основном состоянии три неспаренных электрона имеет атом

11. Элемент с электронной конфигурацией внешнего уровня . 3s23p3 образует водородное соединение состава

12. Электронная конфигурация Is22s22p63s23p6 соответствует иону

13. Электронная конфигурация Is22s22p6 соответствует иону

14. Одинаковую электронную конфигурацию внешнего уровня имеют Са2+ и

15. Атом металла, высший оксид которого Ме2О3, имеет электронную формулу внешнего энергетического уровня

1) ns2пр1 2) ns2пр2 3) ns2np3 4) ns2nps

16. Элемент, которому соответствует высший оксид состава R2O7 имеет электронную конфигурацию внешнего уровня:

1) ns2np3 2)ns2np5 3) ns2np1 4) ns2np2

17. Высший оксид состава R2O7 образует химический элемент, в атоме которого заполнение электронами энергетических уровней соответствует ряду чисел:

1) 2, 8, 1 2) 2, 8, 7 3) 2, 8, 8, 1 4) 2, 5

18. У атома серы число электронов на внешнем энергетическом уровне и заряд ядра равны соответственно

1)4 и + 16 2)6 и + 32 3)6 и + 16 4)4 и + 32

19. Число валентных электронов у марганца равно

20. Одинаковое электронное строение имеют частицы

1) Na0 и Na+ 2) Na0 и K0 3) Na+ и F- 4) Cr2+ и Сr3+

21. Высший оксид состава ЭО3 образует элемент с электронной конфигурацией внешнего электронного слоя

1) ns2np1 2) ns2np3 3) ns2np4 4) ns2np6

22. Число энергетических слоев и число электронов во внешнем энергетическом слое атомов мышьяка равны соответственно

23 Иону Al3+ отвечает электронная конфигурация:

1) 1s22s22p6; 2) 1s22s22p63s1; 3) 1s22s22p63s23p1 4) Is22s22p63s23p64s1

24. Иону Zn2+ отвечает электронная конфигурация:

1) 1s22s22p63s23p63d84s2 2) 1s22s22p63s23p63d104s24p6 3 ) 1s22s22p63s23p63d10 4) Is22s22p63s23p64s1

25. Химическому элементу соответствует летучее водородное соединение состава RH3. Электронная конфигурация внешнего уровня этого элемента

26. Атомы серы и кислорода имеют

1) одинаковое число электронных слоев

2) одинаковое число электронов внешнего электронного слоя

3) одинаковое число протонов в ядре

27. Электронная конфигурация атома фтора

28. Сколько неспаренных электронов имеет атом углерода в состоянии sp3-гибридизации?

29. У атома хлора на третьем электронном уровне имеется одна s-орбиталь, три p-орбитали и пять d-орбиталей. Максимальная валентность хлора равна

30. Элемент, электронная конфигурация атома которого 1s22s22p63s23p2 образует водородное соединение

источник

Под состоянием электрона в атоме понимают совокупность информации об энергии определенного электрона и пространстве, в котором он находится. Мы уже знаем, что электрон в атоме не имеет траектории движения, то есть можно говорить лишь о вероятности нахождения его в пространстве вокруг ядра. Он может находиться в любой части этого пространства, окружающего ядро, и совокупность различных положений его рассматривают как электронное облако с определенной плотностью отрицательного заряда. Образно это можно представить себе так: если бы удалось через сотые или миллионные доли секунды сфотографировать положение электрона в атоме, как при фотофинише, то электрон на таких фотографиях был бы представлен в виде точек. При наложении бесчисленного множества таких фотографий получилась бы картина электронного облака с наибольшей плотностью там, где этих точек будет больше всего.

Читайте также:  Масса раствора формула через плотность

На рисунке 2 показан «разрез» такой электронной плотности в атоме водорода, проходящий через ядро, а штриховой линией ограничена сфера, внутри нее вероятность обнаружения электрона составляет 90%. Ближайший к ядру контур охватывает область пространства, в которой вероятность обнаружения электрона -10%, вероятность же обнаружения электрона внутри второго от ядра контура составляет -20%, внутри третьего — -30% и т. д. В состоянии электрона есть какая-то неопределенность. Чтобы охарактеризовать это особое состояние, немецкий физик В. Гейзенберг ввел понятие о принципе неопределенности, то есть показал, что невозможно определить одновременно и точно энергию и местоположение электрона. Чем точнее определена энергия электрона, тем неопределеннее будет его положение, и наоборот, определив положение, нельзя определить энергию электрона. Область вероятности обнаружения электрона не имеет четких границ. Однако можно выделить пространство, где вероятность нахождения электрона будет максимальной.

Пространство вокруг атомного ядра, в котором наиболее вероятно нахождение электрона, называется орбиталью.

В нем заключено приблизительно 90% электронного облака, и это означает, что около 90% времени электрон находится в этой части пространства. По форме различают 4 известных ныне типа орбиталей, которые обозначают латинскими буквами s, р, d, f. Графическое изображение некоторых форм электронных орбиталей представлено на рисунке 3.

Важнейшей характеристикой движения электрона на определенной орбитали является энергия его связи с ядром. Электроны, обладающие близкими значениями энергии, образуют единый электронный слой или энергетический уровень. Энергетические уровни нумеруют, начиная от ядра: 1, 2, 3, 4, 5, 6 и 7.

Целое число n, обозначающее номер энергетического уровня, называют главным квантовым числом.

Оно характеризует энергию электронов, занимающих данный энергетический уровень. Наименьшей энергией обладают электроны первого энергетического уровня, наиболее близкого к ядру. По сравнению с электронами первого уровня электроны последующих уровней будут характеризоваться большим запасом энергии. Следовательно, наименее прочно связаны с ядром атома электроны внешнего уровня.

Число энергетических уровней (электронных слоев) в атоме равно номеру периода в системе Д. И. Менделеева, к которому принадлежит химический элемент: у атомов элементов первого периода — один энергетический уровень, второго периода — два, седьмого периода — семь.

Наибольшее число электронов на энергетическом уровне определяется по формуле

где N — максимальное число электронов; n — номер уровня или главное квантовое число. Следовательно, на первом, ближайшем к ядру энергетическом уровне может находиться не более двух электронов-,

• на четвертом — не более 32.

А как, в свою очередь, устроены энергетические уровни (электронные слои)?

Начиная со второго энергетического уровня (n = 2), каждый из уровней подразделяется на подуровни (подслои), несколько отличающиеся друг от друга энергией связи с ядром.

Число подуровней равно значению главного квантового числа: первый энергетический уровень имеет один подуровень; второй — два; третий — три; четвертый — четыре подуровня. Подуровни, в свою очередь, образованы орбиталями.

Каждому значению п соответствует число орбиталей, равное n 2 . По данным, представленным в таблице 1, можно проследить связь главного квантового числа п с числом подуровней, типом и числом орбиталей и максимальным числом электронов на подуровне и уровне.


Таблица 1 Главное квантовое число, типы и число орбиталей, максимальное число электронов на подуровнях и уровнях

Подуровни принято обозначать латинскими буквами, равно как и форму орбиталей, из которых они состоят: s, р, d, f.

s-Подуровень — первый, ближайший к ядру атома подуровень каждого энергетического уровня, состоит из одной s-орбитали;

р-подуровень — второй подуровень каждого, кроме первого, энергетического уровня, состоит из трех р-орбиталей;

d-подуровень — третий подуровень каждого, начиная с третьего, энергетического уровня, состоит из пяти d-орбиталей;

f-подуровень каждого, начиная с четвертого, энергетического уровня, состоит из семи f-орбиталей.

На рисунке 4 представлена схема, отражающая число, форму и положение в пространстве электронных орбиталей первых четырех электронных слоев отдельного атома.

1. В настоящее время не принято говорить о вращении электрона вокруг атомного ядра. Почему?

2. Что такое электронное облако и как это понятие соотносится с понятием «орбиталь»?

3. Как с помощью электролиза определить заряд электрона?

4. Чем отличается 1s-орбиталь от 2s-орбитали?

5. Что такое главное квантовое число? Как оно соотносится с номером периода?

6. Что такое подуровень и как это понятие соотносится с номером периода?

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

источник

Электронное строение атома определяется энергией электронов, а также вероятностью их нахождения в каждой точке пространства вблизи ядра. Поведение электронов в атоме описывается с помощью квантовой механики, главный постулат которой – все микрочастицы имеют волновую природу, а волны – свойства частиц (корпускулярно – волновой дуализм).

Масса (m) любой частицы и ее скорость (v) связаны с длиной волны (λ) уравнением де Бройля:

где h – постоянная Планка (6,62 × 10 -34 Дж × с).

Второй постулат квантовой механики говорит о том, что невозможно одновременно точно определить положение и импульс электрона (принцип неопределенности Гейзенберга). Погрешности в определении координаты (Δx) и импульса (Δmv) связаны соотношением:

Δx × Δmv= 1,05 × 10 -34 Дж × с

В-третьих, энергия электронов меняется квантами (порциями).

Поскольку квантовая механика рассматривает вероятность нахождения электрона в пространстве вокруг ядра, а быстродвижущийся электрон может находиться в любой области пространства, то если бы удалось сфотографировать через малые промежутки времени положение электрона в атоме и наложить полученные снимки друг на друга, то получилась бы картина электронного облака.

Электронное облако — квантовомеханическая модель, описывающая состояние электрона в атоме. Плотность электронного облака неравномерна (рис. 1). Пространство, вокруг ядра, в котором наиболее вероятно нахождение электрона, называется орбиталью. В нем заключено 90% электронного облака.

Рис. 1. Электронное облако атома водорода с неравномерной плоностью.

Располагаясь на азличных расстояниях от ядра электроны образуют энергетические слои (энергетические уровни). Их нумеруют, начиная от ядра: 1, 2, 3, 4, 5, 6, 7 или обозначают буквами: K, L, M, N, O, P, Q.

Состояние электрона в атоме можно описать с помощью четырех квантовых чисел (табл. 1). Целое число n, обозначающее номер уровня, называют главным квантовым числом. Оно характеризует энергию электронов, которые занимают конкретный энергетический уровень. Наименьшая энергия характерна для электронов, максимально близко расположенных к ядру. Число энергетических уровней в атоме определяется номером периода, в котором находится элемент. Наибольшее число электронов на энергетическом уровне можно определить по формуле:

где N – число электронов, n – главное квантовое число.

Таблица 1. Квантовые числа, характеризующие состояние электрона в атоме

источник

Атом — это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z — порядковый номер данного элемента в периодической системе химических элементов, е — величина элементарного электрического заряда.

Электрон — это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10 -19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К — оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц — протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны — это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента — водорода. Число протонов в ядре равно Z. Нейтрон — это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А — Z, где А — массовое число данного изотопа (см. Периодическая система химических элементов). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Читайте также:  Можно ли поставить 100 кубов на скутер 50 кубов

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны — гамма-излучение. Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Атом (греч. atomos — неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е — элементарный электрический заряд, равный по величине заряду электрона (4,8·10 —10 эл.-ст. ед.), и Z — атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10 -28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А—Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10 —8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С 12 , принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы — электроны, протоны, атомы и т. д.,— кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии. Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е, в какое-либо из возбужденных состояний Ei происходит при поглощении определенной порции энергии Еi — Е. Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= Ei— Еk где h — постоянная Планка (6,62·10 —27 эрг·сек), v — частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.

источник

Под состоянием электрона в атоме понимают совокупность информации об энергии определенного электрона и пространстве, в котором он находится. Мы уже знаем, что электрон в атоме не имеет траектории движения, то есть можно говорить лишь о вероятности нахождения его в пространстве вокруг ядра. Он может находиться в любой части этого пространства, окружающего ядро, и совокупность различных положений его рассматривают как электронное облако с определенной плотностью отрицательного заряда. Образно это можно представить себе так: если бы удалось через сотые или миллионные доли секунды сфотографировать положение электрона в атоме, как при фотофинише, то электрон на таких фотографиях был бы представлен в виде точек. При наложении бесчисленного множества таких фотографий получилась бы картина электронного облака с наибольшей плотностью там, где этих точек будет больше всего.

На рисунке 2 показан «разрез» такой электронной плотности в атоме водорода, проходящий через ядро, а штриховой линией ограничена сфера, внутри нее вероятность обнаружения электрона составляет 90%. Ближайший к ядру контур охватывает область пространства, в которой вероятность обнаружения электрона -10%, вероятность же обнаружения электрона внутри второго от ядра контура составляет -20%, внутри третьего — -30% и т. д. В состоянии электрона есть какая-то неопределенность. Чтобы охарактеризовать это особое состояние, немецкий физик В. Гейзенберг ввел понятие о принципе неопределенности, то есть показал, что невозможно определить одновременно и точно энергию и местоположение электрона. Чем точнее определена энергия электрона, тем неопределеннее будет его положение, и наоборот, определив положение, нельзя определить энергию электрона. Область вероятности обнаружения электрона не имеет четких границ. Однако можно выделить пространство, где вероятность нахождения электрона будет максимальной.

Пространство вокруг атомного ядра, в котором наиболее вероятно нахождение электрона, называется орбиталью.

В нем заключено приблизительно 90% электронного облака, и это означает, что около 90% времени электрон находится в этой части пространства. По форме различают 4 известных ныне типа орбиталей, которые обозначают латинскими буквами s, р, d, f. Графическое изображение некоторых форм электронных орбиталей представлено на рисунке 3.

Важнейшей характеристикой движения электрона на определенной орбитали является энергия его связи с ядром. Электроны, обладающие близкими значениями энергии, образуют единый электронный слой или энергетический уровень. Энергетические уровни нумеруют, начиная от ядра: 1, 2, 3, 4, 5, 6 и 7.

Целое число n, обозначающее номер энергетического уровня, называют главным квантовым числом.

Оно характеризует энергию электронов, занимающих данный энергетический уровень. Наименьшей энергией обладают электроны первого энергетического уровня, наиболее близкого к ядру. По сравнению с электронами первого уровня электроны последующих уровней будут характеризоваться большим запасом энергии. Следовательно, наименее прочно связаны с ядром атома электроны внешнего уровня.

Число энергетических уровней (электронных слоев) в атоме равно номеру периода в системе Д. И. Менделеева, к которому принадлежит химический элемент: у атомов элементов первого периода — один энергетический уровень, второго периода — два, седьмого периода — семь.

Наибольшее число электронов на энергетическом уровне определяется по формуле

где N — максимальное число электронов; n — номер уровня или главное квантовое число. Следовательно, на первом, ближайшем к ядру энергетическом уровне может находиться не более двух электронов-,

• на четвертом — не более 32.

А как, в свою очередь, устроены энергетические уровни (электронные слои)?

Начиная со второго энергетического уровня (n = 2), каждый из уровней подразделяется на подуровни (подслои), несколько отличающиеся друг от друга энергией связи с ядром.

Число подуровней равно значению главного квантового числа: первый энергетический уровень имеет один подуровень; второй — два; третий — три; четвертый — четыре подуровня. Подуровни, в свою очередь, образованы орбиталями.

Каждому значению п соответствует число орбиталей, равное n 2 . По данным, представленным в таблице 1, можно проследить связь главного квантового числа п с числом подуровней, типом и числом орбиталей и максимальным числом электронов на подуровне и уровне.


Таблица 1 Главное квантовое число, типы и число орбиталей, максимальное число электронов на подуровнях и уровнях

Подуровни принято обозначать латинскими буквами, равно как и форму орбиталей, из которых они состоят: s, р, d, f.

s-Подуровень — первый, ближайший к ядру атома подуровень каждого энергетического уровня, состоит из одной s-орбитали;

р-подуровень — второй подуровень каждого, кроме первого, энергетического уровня, состоит из трех р-орбиталей;

d-подуровень — третий подуровень каждого, начиная с третьего, энергетического уровня, состоит из пяти d-орбиталей;

f-подуровень каждого, начиная с четвертого, энергетического уровня, состоит из семи f-орбиталей.

На рисунке 4 представлена схема, отражающая число, форму и положение в пространстве электронных орбиталей первых четырех электронных слоев отдельного атома.

1. В настоящее время не принято говорить о вращении электрона вокруг атомного ядра. Почему?

2. Что такое электронное облако и как это понятие соотносится с понятием «орбиталь»?

3. Как с помощью электролиза определить заряд электрона?

4. Чем отличается 1s-орбиталь от 2s-орбитали?

5. Что такое главное квантовое число? Как оно соотносится с номером периода?

6. Что такое подуровень и как это понятие соотносится с номером периода?

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

источник