Меню Рубрики

Как узнать разблокирован ли множитель на процессоре

Как самостоятельно разблокировать множитель?

Для разблокировки множителя в процессе разгона процессора необходимо не только наличие определенного набора знаний по данной теме, но и умения их применять. Вообще не рекомендуется заниматься самостоятельным разгоном без опыта или контроля со стороны тех, кто имеет представление о данном процессе.

Откройте крышку вашего компьютера и найдите ваш процессор. Извлеките его и внимательно изучите внешний вид, на нем должны располагаться мостики. Между ними найдите проем с тонким напылением из меди. Из-за этого нельзя замыкать контакты при помощи припоя или карандаша, в этом случае ваш компьютер будет достаточно нелегко восстановить. Здесь самое главное выполнить их замыкание таким образом, чтобы не задеть то самое медное напыление.

Заполните разъем при помощи диэлектрического материала, например, супеклея, который ни в коем случае не должен попасть на контакты. Разъем при этом должен быть заполнен полностью в целях наилучшей изоляции. Обозначьте их при помощи скотча, предварительно очистив поверхность подложки, используя медицинский спирт. Вдоль мостиков наклейте сантиметровые полоски скотча, который не должен затрагивать разъемов, но одновременно покрывать площадку с контактами. Образовавшееся между щелями пространство не должно превышать двух миллиметров.

Скройте разъемы дополнительными полосками скотча, которые нужно наклеить перпендикулярно имеющимся. При этом он не должен вздуваться, а его соприкосновение с поверхность должно быть как можно прочнее, в противном случае клей может протечь. Скотч отклеивается только после полного его высыхания.

Остатки клея необходимо срезать при помощи скальпеля. Выровняйте поверхность, используя жидкий проводник, при этом используйте ту же систему, что и в прошлый раз, со скотчем. Повторите процедуру и для имеющихся на процессоре мостиков. Далее все дорожки необходимо проверить мультиметром. Все они должны контактировать между собой.

Далее приступите к разгону, но не забудьте об особенностях замыкания мостиков процессора, данный параметр предусмотрен по отдельности для различных моделей устройств. Лучше всего не заниматься разгоном самостоятельно, также не приступайте к операции без предварительно найденной инструкции по вашему оборудованию.

источник

Как узнать разблокирован ли множитель на процессоре. Что лучше: частота BCLK против множителя

Как самостоятельно разблокировать множитель?

Для разблокировки множителя в процессе разгона процессора необходимо не только наличие определенного набора знаний по данной теме, но и умения их применять. Вообще не рекомендуется заниматься самостоятельным разгоном без опыта или контроля со стороны тех, кто имеет представление о данном процессе.

Откройте крышку вашего компьютера и найдите ваш процессор. Извлеките его и внимательно изучите внешний вид, на нем должны располагаться мостики. Между ними найдите проем с тонким напылением из меди. Из-за этого нельзя замыкать контакты при помощи припоя или карандаша, в этом случае ваш компьютер будет достаточно нелегко восстановить. Здесь самое главное выполнить их замыкание таким образом, чтобы не задеть то самое медное напыление.

Заполните разъем при помощи диэлектрического материала, например, супеклея, который ни в коем случае не должен попасть на контакты. Разъем при этом должен быть заполнен полностью в целях наилучшей изоляции. Обозначьте их при помощи скотча, предварительно очистив поверхность подложки, используя медицинский спирт. Вдоль мостиков наклейте сантиметровые полоски скотча, который не должен затрагивать разъемов, но одновременно покрывать площадку с контактами. Образовавшееся между щелями пространство не должно превышать двух миллиметров.

Скройте разъемы дополнительными полосками скотча, которые нужно наклеить перпендикулярно имеющимся. При этом он не должен вздуваться, а его соприкосновение с поверхность должно быть как можно прочнее, в противном случае клей может протечь. Скотч отклеивается только после полного его высыхания.

Остатки клея необходимо срезать при помощи скальпеля. Выровняйте поверхность, используя жидкий проводник, при этом используйте ту же систему, что и в прошлый раз, со скотчем. Повторите процедуру и для имеющихся на процессоре мостиков. Далее все дорожки необходимо проверить мультиметром. Все они должны контактировать между собой.

Далее приступите к разгону, но не забудьте об особенностях замыкания мостиков процессора, данный параметр предусмотрен по отдельности для различных моделей устройств. Лучше всего не заниматься разгоном самостоятельно, также не приступайте к операции без предварительно найденной инструкции по вашему оборудованию.

По странному стечению обстоятельств, только несколько дней назад мы получили от представителей Intel описание принципов работы свободного множителя процессора Core 2 Extreme. Именно свободный множитель являлся тем заветным ключом к максимальному разгону процессоров Conroe, ведь обычно модели семейства Core 2 Duo не достигали предельных частот из-за низких максимальных множителей и ограниченных возможностей материнских плат по повышению частоты системной шины. Наверняка многие из вас готовы были отдать если не $1000, за которую можно купить Core 2 Extreme X6800, то хотя бы половину этой суммы за возможность установить тот самый XE Operation бит в нужное значение, позволяющее повышать множитель процессора из BIOS материнской платы.

До сих пор такие возможности оставались мечтами, однако, сегодня на страницах форума XtremeSystems.org возникла и начала стремительно разрастаться ветка, посвящённая методике разблокирования множителя в сторону повышения на серийных процессорах Core 2 Duo средствами материнской платы Intel D975XBX (i975X). Автор темы ссылался на слова сотрудника маркетингового отдела Intel, который на проходившей недавно в США конференции QuakeCon 2006 не только клялся в любви оверклокерам, но и пытался показать маленький трюк, позволяющий разблокировать множитель на процессорах Core 2 Duo.

Точнее говоря, играть с множителем он предпочитал с использованием позволяющего это сделать процессора Core 2 Extreme X6800 (2.93 ГГц), а возможность разблокирования процессоров Core 2 Duo просто декларировал на словах. Утверждается, что на материнской плате Intel D975XBX есть заветный «джампер» (точнее говоря, просто две контактных площадки), замыкание которого и должно открыть доступ к повышению множителя на процессорах Core 2 Duo. Вот где расположены эти контакты на материнской плате:

Увеличенное изображение контактных площадок, которые энтузиастам было предложено замыкать (J8J4):

Тот самый неравнодушный к оверклокерам представитель Intel якобы пояснил американской аудитории, что пресловутый «джампер» используется инженерами для тестирования процессоров Core 2 Duo в лабораториях, и с его же помощью энтузиасты могут получить доступ к повышению множителя в домашних условиях. Словом, идея весьма заманчивая, но пока все последовавшие советам автора оригинальной ветки ничего, кроме неприятностей, не получили. После соединения контактных площадок процессоры Core 2 Duo так и не получали возможность повышать множитель, а система теряла стабильность при загрузке.

Возможно, для доведения этой модификации до рабочего состояния нужно модифицировать и BIOS материнской платы, ведь именно он должен управлять значениями множителей после активации так называемого XE Operation бит. Если, конечно, эта самая активация вообще возможна путём замыкания указанных контактных площадок на материнской плате. Вряд ли Intel стала бы официально оставлять такую лазейку для любителей разгона, ведь свободный множитель — это единственное преимущество процессора Core 2 Extreme X6800 перед более дешёвыми процессорами Core 2 Duo E6xxx, и добровольно лишать себя части прибыли компания не захочет. Кроме того, процессоры серии Core 2 Duo могут иметь аппаратную блокировку максимального значения множителя, а XE Operation бит у них может просто отсутствовать или иметь аппаратную блокировку. Как будут развиваться события дальше, покажет время.

Процессоров AMD. Также будут рассмотрены программные средства, с помощью которых может быть выполнена данная достаточно сложная операция. В дополнение к этому будут даны практические советы относительно того, какие из них в каждой ситуации наиболее оптимально применить. В дополнение к этому будет также приведен список ЦПУ, актуальный для данной манипуляции.

Прежде чем узнать, как разблокировать ядра процессоров AMD, рассмотрим модели ЦПУ, подходящие для данной манипуляции. Этот перечень включает такие семейства чипов этого именитого производителя компьютерной техники:

  1. Микропроцессоры Septron можно превратить из одноядерного исполнения в двухъядерное. Это позволяет увеличить, пусть и незначительно, скорость работы персонального компьютера.
  2. Вычислительные устройства линейки Athlon II в 2- и 3-модульном исполнении можно преобразовать в четырехъядерное ЦПУ. В свою очередь, некоторые модели микропроцессоров данного семейства можно превратить в аналогичный чип серии Phenom II с системой кеш-памяти в три уровня. Соответственно, скорость работы ЭВМ тоже возрастет.
  3. Младшие чипы Phenom II при удачном стечении обстоятельств, как и ранее рассмотренные чипы линейки Athlon II, из двух- и трехъядерных моделей можно преобразовать в четырехблочные. Опять-таки, скорость работы возрастает за счет увеличения модулей обработки кода.

Все ранее изложенные преобразования актуальны для платформы АМ3. Более поздние сокеты компании АМД уже не поддерживают эту операцию.

Теперь разберемся с тем, как разблокировать ядра процессоров AMD с помощью программных средств. Данную операцию можно реализовать двумя способами. Один из них — это использование системы BIOS. Этот способ можно применить лишь только на новых версиях материнских плат, в которых была добавлена опция в меню ACC/UCC. Второй же вариант включения незадействованных аппаратных ресурсов сводится к использованию специальных утилит. Этот способ активации ядер доступен на любой материнской плате.

Теперь разберемся с тем, как разблокировать ядра процессоров AMD Athlon и прочих чипов в рамках сокета АМ3 с задействованием системы BIOS. Опять-таки, данный метод применим лишь только для тех материнских плат, которые были выпущены в 2012 году или же позже. В меню системы BIOS в каждой из них был добавлен специальный пункт АСС (для чипсетов компании АМД) или UCC (в случае использования набора системной логики от NVidia).

Как в первом, так и во втором случае алгоритм реализации следующий:

  1. При включении вычислительной системы нужно нажать при появлении тестового окна кнопку F2, для того чтобы войти в BIOS.
  2. Далее нужно с использованием навигационных клавиш перейти в пункт меню под названием Advanced и открыть его с использованием клавиши «Ввод».
  3. На следующем этапе находим подпункт АСС / UCC, переводим на него указатель с задействованием все тех же навигационных клавиш.
  4. Потом с помощью кнопок PgUp и PgDn устанавливаем его в состояние Enabled.
  5. Сохраняем изменения. Для этого достаточно нажать F10. Далее появится запрос на сохранение изменений. Отвечаем положительно на него.
  6. После этого произойдет перезагрузка. Далее нужно проверить стабильность работы ПК после проведенных манипуляций по методике, которая в дальнейшем будет описана.

Если компьютер функционирует нестабильно, то с применением микропереключателя JP1 на материнской плате возвращаем параметры BIOS в исходное состояние.

Наиболее часто данный метод применяют на старых версиях системных плат. Но он также применим и на их более новых модификациях. То есть он достаточно универсальный. Как и предыдущий способ, этот метод позволяет превратить низко производительный чип серии Athlon II в высокопроизводительный процессор AMD Phenom 2 X2 например.

Каждый производитель системных плат для этих целей предлагал свою утилиту. Например, компания Gigabyte рекомендовала применять программу CPU Unlock. Ее можно было найти на компакт-диске системной платы одноименного производителя.

Читайте также:  Нужно ли при климаксе предохраняться

В этом обзоре было описано, как разблокировать ядра процессоров AMD Phenom и не только. После выполнения этой операции настоятельно рекомендуется проверить стабильность и надежность работы компьютера.

Для этого на первом этапе необходимо установить специализированную программу CPU-Z. Затем запустить ее и детально проверить параметры микропроцессора.

Далее нужно проинсталлировать специализированную утилиту AIDA64 и уже с ее помощью осуществить комплексную проверку ПК. Если компьютер начинает работать нестабильно, то сбрасываем параметры BIOS в исходное состояние с помощью все того же переключателя JP1. Также можно попытаться вернуть системный софт к исходному состоянию с помощью интегрированной программы операционной системы.

В данном обзоре были детально описаны основные способы того, как разблокировать ядра процессоров AMD. FX — 4300 и прочие более новые ЦПУ, предназначенные для установки в сокет АМ3+, уже не позволяли реализовывать такую операцию. То есть лишь только в рамках компьютерной платформы данная практика получила наибольшее распространение.

Опять-таки, данные модели микропроцессоров были актуальными в 2010 — 2013 годах. Сейчас же эта платформа устарела. Поэтому кардинального улучшения быстродействия за счет активации дополнительных ядер уже точно добиться не получится.

Данная обзорная статья была посвящена тому, как разблокировать ядра процессоров AMD в рамках вычислительной платформы АМ3. На момент появления таких чипов эта операция способствовала росту продаж ранее рассмотренных модификаций ЦПУ. Сейчас же она устарела и не подходит для реализации высокопроизводительных ЭВМ.

Наиболее рационально активацию отключенных ресурсов выполнять с помощью специальных утилит. Но более просто это сделать с использованием системы BIOS. Поэтому, если возможно, используем последний способ. Если же в компьютере установлена старая версия системной платы, то можно использовать более сложный способ, который базируется на специализированном программном обеспечении.

Дата публикации: 01.04.2015

Все мы знаем, что производители компьютерного железа закладывают большой запас возможностей в свои комплектующие. Но жадные маркетологи продают это порциями, выключая многие функции и скрывая блоки от использования. Научимся включать скрытые возможности.


ВКЛЮЧЕНИЕ ЯДЕР ПРОЦЕССОРОВ AMD

Многие процессоры содержат скрытые ядра

Данной модификации подвержены практически все процессоры AMD, в особенности Phenom II X6 и FX-series, поскольку они имеют скрытые ядра.

Как правило включается 1-2 скрытых ядра, а в случае ФХ-ов четырехъядерники становятся FX-4300 => FX 6300 шестиядерниками, FX 6350 = FX 8320 восьмиядерником, а FX 8350 => FX 9590 5GHz становится топовым процессором. Для этого в биосе надо включить функцию UCC Unlocker.

ВКЛЮЧЕНИЕ ЯДЕР ПРОЦЕССОРОВ INTEL

Аналогичное происходит и с процессорами INTEL, с той лиш разницей, что часто еще и включается кэш L3 на младших процессорах. Для активации нужно обновить биос до разлоченного Unlock intel BIOS и включить соответствующую галочку.

РАЗГОН CPU Intel Core i3/i5/i7 без множителя «K»

Альтернативный БИОС позволяет разгонять все процессоры Intel

Всем так же известно, что процессоры Intel с разблокированным множителем K абсолютно ничем не отличаются от таких же без множителя, кроме как завышенной ценой. Однако их можно разгонять шиной увеличивая базовую FSB со 100МГц вплоть до 200МГц (т.е. в 2 раза!), либо открыть множитель обновив биос все тем же Unlock intel BIOS

УВЕЛИЧЕНИЕ ЕМКОСТИ HDD

Не секрет что пластины на винчестеры делаются СТАНДАРТНОГО объема. Тогда ОТКУЦДА, скажете вы, берутся кратные емкости HDD, скажем в 750Гб.

Все правильно — производитель просто блокирует на одной или нескольких пластинах объем жесткого диска, который можно и НУЖНО разблокировать!

Для разблокировки нам понадобится программа Acronis.

1.) Следует сначала изменить в настройках диска тип с MBR => GPT и сделать его динамическим, чтобы скрытые областя могли свободно адресоваться операционной системой.

2.) Надо размагнитить ваш винчестер мощным магнитом, для стирания заводского блокирующего кода.

3.) Утилитой Acronis выбрать любой желаемый объем HDD.

ОТКЛЮЧЕНИЕ БИТЫХ БЛОКОВ HDD

Всегда приятно программно исправить винчестер

Ту же самую манипуляцию, только в обратном порядке, следует выполнить чтобы заблокировать битые области. В этом случае даже посыпавшийся винчестер станет работать как новый. При этом помните, что легко восстановить любые утерянные данные на HDD, т.к они всегда резервно копируются на скрытые заводские разделы. Для этого опять же их надо просто включить как описано в главе выше.

ВКЛЮЧЕНИЕ ВСЕХ ШЕЙДЕРОВ ВИДЕОКАРТЫ RADEON

R9 290X разлоченный из простого Radeon HD 7730 1Gb

Видеокарты Radeon и GeForce помимо прочего отличаются тем, что Nvidia не ленится для каждой новой видеокарты делать отдельный чип, а вот AMD обычно просто отключает часть шейдерных блоков старших видеокарт чтобы получились младшие. Судите сами, у таких видеокарт как Radeon HD 5850 и 5870 чип одинаковый, а шейдеров 1440 и 1600 соответственно. То же самое и у R9 280-280X и т.д.

Для включения всех шейдеров Radeon необходимо установить на него драйвер от GeForce в безопасном режиме как на стандартное VGA устройство (перегружаемся нажимая F8).

Разблокировка в разы увеличивает скорость

ВКЛЮЧЕНИЕ ВСЕХ CUDA-ядер ВИДЕОКАРТЫ NVIDIA

Тут уже будет посложнее… Необходимо замкнуть перемычки на порте VGA копеечными резисторами как показан на рисунке.

Данная манипуляция включает все блоки видеокарт GeForce

Параметры резисторов значения не имеют. Так же этот способ делает из всех видеокарт профессиональные серии TESLA , а так же борется с артефактами.

УВЕЛИЧЕНИЕ МОЩНОСТИ БЛОКА ПИТАНИЯ

Высокое напряжение может УБИТЬ! Не делайте так))

Практически все китайские блоки питания отличаются только размерами охлаждающих радиаторов. Поэтому достаточно просто открыть крышку и установить на БП еще один вентилятор и можно даже на нонеймовский БП 400W повесить SLI GeForce 780Ti или младшие видеокарты разлоченные до нее.

Не забываем, что статья написана исключительно на правах первоапрельской шутки 🙂 и не гонимся за шарой. Следует отметить, что в умелых руках некоторые вещи действительно удается осуществить. Но гораздо больше пользы от того, если правильно составить конфигурацию и подобрать комплектующие именно под вашу задачу.

Весеннего вам настроения!

ВведениеРазгон давно перестал быть искусством для избранных, сегодня это — массовое явление, в которое вовлечены не только компьютерные энтузиасты, но производители и продавцы железа. Армия оверклокеров настолько многочисленна, что не считаться с ней не могут даже такие гиганты как Intel. В результате, в последние несколько лет мы имеем возможность наблюдать как различные компании, производящие комплектующие, не только активно адаптируют свои изделия для разгона, но и осваивают выпуск специализированных оверклокерских продуктов. В частности, на процессорном рынке такими специализированными продуктами оказываются в первую очередь процессоры с разблокированным коэффициентом умножения. Они открывают простой путь к увеличению их тактовой частоты, который позволяет избавиться от дополнительных требований к остальной платформе и в конечном итоге может привести к покорению рекордных оверклокерских вершин.

До недавних пор свое расположение к оверклокерам особенно выказывала компания AMD. В её ассортименте имеется сразу несколько процессоров серии Black Edition (с разблокированным множителем) относящихся к различным ценовым категориям. Более того, эта компания даже предлагала специально отобранные TWKR-модификации процессоров, способные работать при весьма агрессивном увеличении напряжения питания. Intel же в отношении к оверклокерам была более консервативна: специализированные предложения компании на протяжении нескольких последних лет ограничивались лишь экстремально дорогими 1000-долларовыми моделями CPU с разблокированным множителем.

Но реалии и массовый интерес к разгону заставил ворочаться и микропроцессорного гиганта. Примерно с год назад в целях исследования спроса Intel провела эксперимент и предложила на региональном китайском рынке недорогой LGA775-процессор Pentium E6500K, обладающий разблокированным коэффициентом умножения. Эксперимент, очевидно, дал положительные результаты, поскольку в недрах компании было принято решение расширить эту инициативу. И в самое ближайшее время, а конкретнее на предстоящей выставке Computex, Intel намеревается анонсировать сразу пару широкодоступных оверклокерских процессоров с разблокированным множителем для самой актуальной на данный момент платформы LGA1156.

Представлены будут — четырёхъядерный Core i7-875K и двухъядерный Core i5-655K. С точки зрения формальных характеристик эти CPU станут аналогами давно поставляющихся Core i7-870 и Core i5-650, но в отличие от них предложат свободно изменяемый коэффициент умножения, открывающий дополнительные возможности для их разгона. Что особенно приятно, Intel не собирается рассматривать оверклокерские модели как эксклюзивные предложения, и на них будет установлена весьма демократичная цена, отличающаяся от стоимости «обычных» моделей не более чем на 20-25 %.

В итоге, энтузиасты получат весьма обширный выбор процессоров с разблокированным множителем, которые теперь будут доступны практически для любой актуальной платформы.

Как видим, новинки вполне органично вписываются в структуру существующих оверклокерских предложений. Тем не менее, выход Core i7-875K и Core i5-655K вряд ли вызовет какие-то серьёзные изменения на рынке: до сих пор оверклокеры с успехом использовали для разгона Core i7-860 и Core i5-650, а новые модели стоят дороже. Да, они могут быть разогнаны простым изменением множителя, но и разгон увеличением частоты базового тактового генератора в большинстве случаев даёт вполне нормальные результаты. Иными словами, выпуск Core i7-875K и Core i5-655K — это прекрасный имиджевый шаг, которому могут реально обрадоваться энтузиасты-рекордсмены, занимающиеся экстремальным разгоном и реально сталкивающиеся с нестабильностью материнских плат из-за чрезмерного роста частоты базового тактового генератора. Но так ли нужны эти процессоры в обычных разогнанных системах?

Заметить отличия от имеющихся моделей трудно и по скриншотам диагностических утилит. Например, в CPU-Z новые процессоры выделяются только идентификационной строкой с названием.

Обратите внимание, Core i7-875K основывается на ядре степпинга B1, а Core i5-655K — на ядре степпинга C2. Это значит, что в этих процессорах используются такие же версии полупроводниковых кристаллов, как и в обычных общеупотребительных моделях. Следовательно, новые оверклокерские процессоры вряд ли смогут предложить своим обладателям какой-то особенный частотный потенциал, а их единственным отличительным признаком является свободный множитель.

Тем не менее, Core i7-875K и Core i5-655K выступают продуктами особого рода, они не заменяют, а дополняют имеющийся модельный ряд LGA1156-процессоров. Для акцентирования этого новинки будут поставляться в особой упаковке, на которой будет особо выделено слово «unlocked».

Кстати, оверклокерские процессоры будут продаваться без традиционного кулера в комплекте. Intel справедливо рассудила, что энтузиасты, приобретающие процессор с разблокированным множителем, предпочтут выбрать систему охлаждения самостоятельно.

Представители Intel обещают, что у новых процессоров не возникнет никаких проблем совместимости с существующими материнскими платами. Что, в общем-то, совершенно неудивительно, ведь ничего действительно нового в них нет. Однако для того, чтобы получить полный доступ к возможности смены множителя, обновление BIOS на материнской плате может оказаться не лишним.

Материнская плата ASUS P7P55D Premium (LGA1156, Intel P55 Express);
Память 2 x 2 GB, DDR3-1600 SDRAM, 9-9-9-24 (Kingston KHX1600C8D3K2/4GX);
Графическая карта ATI Radeon HD 5870;
Жёсткий диск Western Digital VelociRaptor WD3000HLFS;
Процессорный кулер Thermalright Ultra-120 eXtreme с вентилятором Enermax Everest;
Блок питания: Tagan TG880-U33II (880 Вт).

Целью нашего тестирования стало определения той максимальной частоты, которой можно достичь при разгоне процессоров Core i7-875K и Core i5-655K используя изменение множителя.

Читайте также:  Тонкое запястье у женщин признак

При установке этого процессора в тестовую систему сразу же обратили на себя внимание метаморфозы, произошедшие с BIOS материнской платы.

Настройка CPU Ratio Setting, отвечающая за установку множителя, стала позволять выбор любых значений от 9х до 63х, но это было вполне ожидаемо. Гораздо более интересным событием стало появление дополнительных параметров TurboMode x-Core Ratio Offset, дающих полный контроль над технологией Intel Turbo Boost.

Эти настройки дают возможность управлять пределами изменения частоты процессора в рамках технологии Intel Turbo Boost. То есть, для процессора с разблокированным множителем можно вручную задать масштабы прироста тактовой частоты в турбо-режиме при активности 1, 2, 3 или 4 ядер.

К сожалению, на этом приятные неожиданности закончились. Ни дополнительных множителей для установки частоты DDR3 памяти, ни возможности изменять частоты работы Uncore-части процессора Core i7-875K не предоставляет. Это значит, что частота Uncore жёстко связана с базовой частотой (BCLK) и при использовании её номинального значения 133 МГц, равна 2,4 ГГц. Выбор же частот работы памяти при штатном значении BCLK ограничен набором 800, 1066, 1333 и 1600 МГц.

Перейдём непосредственно к разгону. Core i7-875K предоставляет полный доступ к коэффициенту умножения, а его увеличение не влечёт за собой никаких изменений в работе каких-либо подсистем кроме вычислительных ядер. Так что алгоритм разгона совершенно элементарен, он не требует изменения частот работы памяти или увеличения напряжения на Uncore-части процессора. Достаточно только увеличивать коэффициент умножения и поднимать напряжение питания процессора.

При повышении напряжения питания процессора до 1,35 В, которые можно считать вполне безопасным уровнем при использовании воздушного охлаждения, нам удалось добиться стабильного функционирования CPU на частоте 4,0 ГГц.

Это — вполне нормальный, но не выдающийся уровень разгона для процессоров на ядре Lynnfield. Впрочем, мы и не ждали ничего другого, ведь Core i7-875K — это просто ещё один представитель хорошо знакомого семейства. Так что примечательно в полученном результате только одно — для его достижения мы не повышали частоту базового тактового генератора BCLK, а, следовательно, не накладывали никакой дополнительной нагрузки на материнскую плату.

Разблокированный двухъядерный Clarkdale также как и Lynnfield предоставляет полный доступ не только к «базовому» коэффициенту умножения, но и к технологии Turbo Boost, позволяя использовать разные произвольные множители, выбираемые процессором в зависимости от загрузки его ядер. То есть, в этом отношении возможности такие же, как и при использовании Core i7-875K. Однако, в отличие от четырёхъядерника, Core i5-655K предлагает воспользоваться и расширенными настройками частоты памяти.

Обычные, неоверклокерские процессоры Clarkdale при использовании штатной частоты базового тактового генератора (BCLK) 133 МГц позволяют тактовать память как DDR3-800, DDR3-1066 или DDR3-1333. Процессоры Lynnfield, и Core i7-875K в том числе, к этому списку добавляют DDR3-1600. В Core i5-655K коэффициент, формирующий частоту памяти, оказался разблокирован совсем, благодаря чему контроллер памяти этого процессора может тактовать память и как DDR3-1866 или DDR3-2133 без увеличения частоты BCLK.

Что же касается собственно разгона, то при увеличении напряжения до 1,35 В процессор Core i5-655K смог работать при множителе 33, то есть с частотой 4,4 ГГц. Система в таком состоянии сохраняла полную стабильность, что было подтверждено проверкой с использованием утилиты LinX 0.6.3.

И вновь мы видим вполне обыденный разгон, несмотря на то, что в тесте использовался специальный оверклокерский процессор. Это ещё раз подтверждает, что для производства своих разблокированных новинок компания Intel не отбирает полупроводниковые кристаллы каким-то специальным образом. По своему частотному потенциалу Core i7-875K и Core i5-655K полностью сопоставимы с другими вариантами Lynnfield и Clarkdale. Так что кроме свободных множителей эти процессоры не могут похвастать никакими другими очевидными преимуществами.

Следовательно, использование в оверклокерских системах новых процессоров Core i7-875K и Core i5-655K может быть оправдано лишь тогда, когда разгон посредством повышения коэффициента умножения по каким-то причинам не даёт полностью раскрыть весь частотный потенциал CPU. А это возможно лишь в двух случаях. Либо при использовании «плохой» материнской платы, не имеющей необходимых настроек для изменения частоты BCLK и напряжений на памяти и Uncore. Либо при экстремальном разгоне процессора, когда речь идёт о повышении его частоты более чем на 50 %, что требует поднятия базовой частоты BCLK далеко за 200-мегагерцовый рубеж, после которого неминуемо возникают проблемы со стабильностью, связанные с материнской платой.

Появление в продаже Core i7-875K и Core i5-655K приведёт к тому, что в подавляющем большинстве оверклокерских LGA1156-систем, если речь не идёт об использовании экстремальных методов охлаждения, разгон с одинаковым успехом сможет выполняться как увеличением частоты тактового генератора, так и изменением коэффициента умножения процессора. Естественно, при таком положении дел возникает вполне резонный вопрос — какой вариант разгона выгоднее.

Чтобы внести ясность, мы решили протестировать работающий на частоте 4,0 ГГц Core i7-875K в двух вариантах: когда для достижения этого рубежа использовано повышение до 200 МГц частоты BCLK и когда BCLK остаётся на штатных 133 МГц, а повышается множитель. Следует заметить, что в случае с разгоном через повышение частоты базового тактового генератора мы даже немного понизили множитель до 20 (это действие может быть выполнено в любой системе, даже с неразблокированным процессором) для того, чтобы добиться полного соответствия в частоте работы памяти. В результате, в сравнении участвовало две аналогичных системы:

Процессор Core i7-875K на частоте 4,0 ГГц = 20 х 200 МГц, память DDR3-1600 (9-9-9-24-1T)

Процессор Core i7-875K на частоте 4,0 ГГц = 30 х 133 МГц, память DDR3-1600 (9-9-9-24-1T)

Как показывают результаты тестов, разница в способах разгона действительно сказывается на производительности. И более выгодным оказывается разгон увеличением частоты BCLK, а не изменением множителя процессора. Что, впрочем, вполне закономерно, учитывая, что на частоту базового тактового генератора завязаны частоты работы шины QPI, контроллера памяти и L3-кэша. Особенно сильное отличие в производительности видно на примере синтетического теста, измеряющего скорость работы памяти и L3-кэша. Однако и в реальных приложениях разгон через BCLK даёт выигрыш в быстродействии порядка 1-2 %. Это, конечно, нельзя назвать впечатляющим разрывом в скорости, но энтузиастам, занимающимся тонкой настройкой систем, и такое преимущество может показаться существенным.

В анонсе процессоров Core i7-875K и Core i5-655K, обладающих разблокированным множителем, в первую очередь представляет интерес сам факт их выпуска. Действительно, появление недорогих LGA1156-процессоров Intel, целенаправленно предназначенных для использования в разогнанных системах, сродни небольшой революции. Если даже Intel признала существование разгона как явления, то ни у кого не должно оставаться сомнений в том, что разгон окончательно и бесповоротно вышел из компьютерного андеграунда и отныне является общепризнанным и глобальным течением. Его же адепты получили в свои руки ещё один готовый и простой инструмент, который позволит им с одной стороны покорить новые вершины, а с другой — привлечь на свою сторону новых сторонников. И с этой позиции выпуск компанией Intel процессоров Core i7-875K и Core i5-655K — это прекрасный маркетинговый шаг.

В то же время следует понимать, что процессоры с разблокированным множителем — это скорее узкоспециализированный продукт, а не общеупотребительное решение. Да, использование процессоров типа Core i7-875K и Core i5-655K существенно упрощает процесс разгона и снимает требования к остальной платформе. Но с другой стороны в большинстве случаев разгон обычных процессоров с заблокированным множителем через повышение частоты тактового генератора даёт ничуть не худшие результаты. И поэтому, так как все отличия между оверклокерскими и обычными CPU ограничиваются лишь возможностью (или невозможностью) изменения множителя, смысла переплачивать и приобретать разблокированные модели в общем случае не просматривается. Тем более что разгон через увеличение базовой частоты при прочих равных позволяет получить и слегка более высокую производительность.

Однако существуют и частные ситуации, в которых разблокированные процессоры вроде Core i7-875K и Core i5-655K могут стать реально необходимыми составляющими системы. Во-первых, вне всяких сомнений, эти процессоры станут героями экстремального разгона. Серьёзное повышение частоты процессора, становящееся доступным при использовании продвинутых методов охлаждения, нередко упирается в возможности LGA1156 материнских плат, неспособных обеспечить стабильное функционирование платформы при сильном превышении частоты тактового генератора. В этом случае предлагаемые новинками свободные коэффициенты умножения — это своего рода панацея. Во-вторых, Core i7-875K и Core i5-655K можно смело порекомендовать начинающим оверклокерам, не желающим на первых же шагах овладевать всеми премудростями тонкой настройки системы при разгоне через повышение частоты BCLK. И, в-третьих, разблокированный множитель может оказаться полезен в системах, в основе которых лежат материнские платы, не предоставляющие пользователю необходимого инструментария для достойного разгона.

Давид против Голиафа: сравнение Intel Core i7-975 EE и Core i5-750 в современных играх
Шесть ядер, версия AMD. Обзор AMD Phenom II X6 1090T Black Edition и Phenom II X6 1055T
Шесть ядер для десктопа: Intel Core i7-980X Extreme Edition

источник

Дата публикации: 01.04.2015

Все мы знаем, что производители компьютерного железа закладывают большой запас возможностей в свои комплектующие. Но жадные маркетологи продают это порциями, выключая многие функции и скрывая блоки от использования. Научимся включать скрытые возможности.


ВКЛЮЧЕНИЕ ЯДЕР ПРОЦЕССОРОВ AMD

Многие процессоры содержат скрытые ядра

Данной модификации подвержены практически все процессоры AMD, в особенности Phenom II X6 и FX-series, поскольку они имеют скрытые ядра.

Как правило включается 1-2 скрытых ядра, а в случае ФХ-ов четырехъядерники становятся FX-4300 => FX 6300 шестиядерниками, FX 6350 = FX 8320 восьмиядерником, а FX 8350 => FX 9590 5GHz становится топовым процессором. Для этого в биосе надо включить функцию UCC Unlocker.

ВКЛЮЧЕНИЕ ЯДЕР ПРОЦЕССОРОВ INTEL

Аналогичное происходит и с процессорами INTEL, с той лиш разницей, что часто еще и включается кэш L3 на младших процессорах. Для активации нужно обновить биос до разлоченного Unlock intel BIOS и включить соответствующую галочку.

РАЗГОН CPU Intel Core i3/i5/i7 без множителя «K»

Альтернативный БИОС позволяет разгонять все процессоры Intel

Всем так же известно, что процессоры Intel с разблокированным множителем K абсолютно ничем не отличаются от таких же без множителя, кроме как завышенной ценой. Однако их можно разгонять шиной увеличивая базовую FSB со 100МГц вплоть до 200МГц (т.е. в 2 раза!), либо открыть множитель обновив биос все тем же Unlock intel BIOS

Читайте также:  Что такое инстаграм и зачем он нужен

УВЕЛИЧЕНИЕ ЕМКОСТИ HDD

Не секрет что пластины на винчестеры делаются СТАНДАРТНОГО объема. Тогда ОТКУЦДА, скажете вы, берутся кратные емкости HDD, скажем в 750Гб.

Все правильно — производитель просто блокирует на одной или нескольких пластинах объем жесткого диска, который можно и НУЖНО разблокировать!

Для разблокировки нам понадобится программа Acronis.

1.) Следует сначала изменить в настройках диска тип с MBR => GPT и сделать его динамическим, чтобы скрытые областя могли свободно адресоваться операционной системой.

2.) Надо размагнитить ваш винчестер мощным магнитом, для стирания заводского блокирующего кода.

3.) Утилитой Acronis выбрать любой желаемый объем HDD.

ОТКЛЮЧЕНИЕ БИТЫХ БЛОКОВ HDD

Всегда приятно программно исправить винчестер

Ту же самую манипуляцию, только в обратном порядке, следует выполнить чтобы заблокировать битые области. В этом случае даже посыпавшийся винчестер станет работать как новый. При этом помните, что легко восстановить любые утерянные данные на HDD, т.к они всегда резервно копируются на скрытые заводские разделы. Для этого опять же их надо просто включить как описано в главе выше.

ВКЛЮЧЕНИЕ ВСЕХ ШЕЙДЕРОВ ВИДЕОКАРТЫ RADEON

R9 290X разлоченный из простого Radeon HD 7730 1Gb

Видеокарты Radeon и GeForce помимо прочего отличаются тем, что Nvidia не ленится для каждой новой видеокарты делать отдельный чип, а вот AMD обычно просто отключает часть шейдерных блоков старших видеокарт чтобы получились младшие. Судите сами, у таких видеокарт как Radeon HD 5850 и 5870 чип одинаковый, а шейдеров 1440 и 1600 соответственно. То же самое и у R9 280-280X и т.д.

Для включения всех шейдеров Radeon необходимо установить на него драйвер от GeForce в безопасном режиме как на стандартное VGA устройство (перегружаемся нажимая F8).

Разблокировка в разы увеличивает скорость

ВКЛЮЧЕНИЕ ВСЕХ CUDA-ядер ВИДЕОКАРТЫ NVIDIA

Тут уже будет посложнее… Необходимо замкнуть перемычки на порте VGA копеечными резисторами как показан на рисунке.

Данная манипуляция включает все блоки видеокарт GeForce

Параметры резисторов значения не имеют. Так же этот способ делает из всех видеокарт профессиональные серии TESLA , а так же борется с артефактами.

УВЕЛИЧЕНИЕ МОЩНОСТИ БЛОКА ПИТАНИЯ

Высокое напряжение может УБИТЬ ! Не делайте так ))

Практически все китайские блоки питания отличаются только размерами охлаждающих радиаторов. Поэтому достаточно просто открыть крышку и установить на БП еще один вентилятор и можно даже на нонеймовский БП 400W повесить SLI GeForce 780Ti или младшие видеокарты разлоченные до нее.

Не забываем, что статья написана исключительно на правах первоапрельской шутки 🙂 и не гонимся за шарой. Следует отметить, что в умелых руках некоторые вещи действительно удается осуществить. Но гораздо больше пользы от того, если правильно составить конфигурацию и подобрать комплектующие именно под вашу задачу.

источник

Решился пересесть с AMD на Intel? И вот стал вопрос — а много ли кроме разблокированного множителя мне даст приставка К. Хочу поставить 2500К или можно ставит что нибудь попроще? Абакан.

Если планируете разгон по множителю — берите ОЕМ процессор с индексом К, желательно, 2500К и хороший кулер. И материнку хотя бы pro3gen3.
Если без разгона, то, соответственно, без индекса.
Ничего кроме разблокированного множителя индекс не даёт.

не ведись. не надо.
разогнать не сможешь, ну а оно надо вообще? 🙂

Avezio И материнку хотя бы pro3gen3.

хорошая материнка! знаю трёх человек с форума, у которых она приказала долго жить.

TED1 Решился пересесть с AMD на Intel? И вот стал вопрос — а много ли кроме разблокированного множителя мне даст приставка К. Хочу поставить 2500К или можно ставит что нибудь попроще? Абакан.

Турболёт
хорошая материнка! знаю трёх человек с форума, у которых она приказала долго жить.

Брак случается и у ASUS с Gigabyte. Материнка для своих денег достойная.

Ну в принципе я хочу только для игр взять, а мать буду ставить Msi Z68A-GD65 (G3)

TED1 Ну в принципе я хочу только для игр взять, а мать буду ставить Msi Z68A-GD65 (G3)

если брать проц без «к», то чипсет можно и не «z» брать

каждый для себя решает стоит или нет
мой 2500K работает на 4.7
без K индекса 2500 гонятся макс до 3.8

Лично мне стоило, хоть из-за того что материнка у меня досталась на халяву, она у меня на H61. Разгонять пока не могу.
Если вы не оверклокер и даже это вам не интересно, всё равно. В будущем вам его хватит чуть на дольше, т.е можно ещё немного потянуть время получив небольшой прирост.

Переход на Intel уже плюс, так что не бойтесь 🙂 Лучше взять вот этот процессор, т.к простой 3570 стоит больше чем он 😀 Ну и хорошую плату на 1155 сокет взять нужно.

Это раньше было ооо.. разгон дело сложное системная шина контроллер памяти северный мост охлаждение фазы питания и прочая шняга все частоты напряжения и тайминги скурпулезно подгонялись под стабильный вариант.
А сейчас тупо повышаешь множитель 100*33. 40-42-45-48 и все ну разве еще напряжение немного приподнять и никаких проблем.
тем более болие тонкий техпроцесс более высокие частоты и 4500мгц это вообще не проблема абсолютно безопасная частота и напряжение с которым справится любой охлад на теплотрубках
вообщем по теме однозначно стоит брать 2500к и он своих денег стоит
а те кто утверждают что не надо те никогда и не знали что такое высокие частоты

разгон по множителю от материнскойй платы абсолютно никак не зависит

не будь бы интел очень жадными на деньги сделали бы все процы на Sandy с разблокированным множителем и все материнки на 1155 такие же но они жадные и все позаблокировали
на самой голимой материнке на P67 и самый голимый 2500К с вероятность 100% берет 4500мгц на напряжении до 1,35.

Sandy Bridge разгон по множителю от материнскойй платы абсолютно никак не зависит

Это к тому, что не стоит брать первую попавшуюся мамку, выбрать стоит крепкого середнячка. Выкидывать деньги на топовые решения тоже смысла не вижу.

А под крепким среднячком вы что подразумеваете? Незнаю когда то сидел на Core i5-750 и msi p55-gd 65. Всё работало просто божественно, никаких перегревов и чудес мать не приподносила. Плюс авторазгон пригодился, учился на нём разгонять. Но тот комп пришлось продать, и сейчас сижу на AMD 3870К и честно говоря. я так разочарован, сейчас подкоплю денег и пересяду на интел) Вот ребят вопрос 2500К или 3570K ?

TED1 А под крепким среднячком вы что подразумеваете? Незнаю когда то сидел на Core i5-750 и msi p55-gd 65. Всё работало просто божественно, никаких перегревов и чудес мать не приподносила. Плюс авторазгон пригодился, учился на нём разгонять. Но тот комп пришлось продать, и сейчас сижу на AMD 3870К и честно говоря. я так разочарован, сейчас подкоплю денег и пересяду на интел) Вот ребят вопрос 2500К или 3570K ?

2500K
Равная или более высокая производительность при меньшей температуре в разгоне.

А чем 3870К не понравился?

Да мне оба нравятся, конечно охота меньшее тепловыделение, более высокую производительность, Особенно в играх. Ну и разгон охота попроще, я в этом деле новичок) Вот я и думаю какой брать?

Стоит брать проц с разблокированным множителем, чтобы система прожила года 4 с дальнейшим разгоном.

источник

Процессоры Intel® Core™ с разблокированным множителем позволяют выполнять оверклокинг 1 ЦП для дополнительного повышения производительности и расширения игровых возможностей.

Оверклокинг 1 процессора Intel® Core™ с разблокированным множителем, оперативной памяти и системной платы — это способ индивидуальной настройки компьютера. Вы можете настроить мощность, параметры напряжения, ядер, памяти и другие важные системные показатели для дополнительного повышения производительности. Оверклокинг помогает ускорить работу компонентов — и геймплей. Также он позволяет оптимизировать задачи, требующие большого количества ресурсов процессора, например обработку изображений и транскодирование. 1 2

Intel® XTU — это инструмент на базе Windows, предоставляющий возможности оверклокинга 1 процессоров Intel® Core™ с разблокированным множителем.

Intel® XMP позволяет выполнять оверклокинг 1 оперативной памяти, в том числе определенные модели памяти DDR4 на базе технологий Intel®, повышая ее производительность сверх стандартных спецификаций.

Номер процессора Базовая частота процессора Кэш-память Кол-во ядер/кол-во потоков Расчетная мощность (TDP) Типы памяти Графика
Процессор Intel® Core™ i9-9900K 3,6 ГГц 16 МБ 8/16 95 Вт Два канала DDR4-2666 Графика Intel® UHD 630
Процессор Intel® Core™ i7-9700K 3,6 ГГц 12 МБ 8/8 95 Вт Два канала DDR4-2666 Графика Intel® UHD 630
Процессор Intel® Core™ i5-9600K 3,7 ГГц 9 МБ 6/6 95 Вт Два канала DDR4-2666 Графика Intel® UHD 630
Номер процессора Базовая частота процессора Кэш-память Кол-во ядер/кол-во потоков Расчетная мощность (TDP) Типы памяти Графика
Процессор Intel® Core™ i9 9980HK 2,4 ГГц 16 МБ 8/16 45 Вт Два канала DDR4-2666 Графика Intel® UHD 630

Сравнение процессоров с разблокированным множителем для настольных ПК премиум-класса

Номер процессора Базовая частота процессора Кэш-память Кол-во ядер/кол-во потоков Расчетная мощность (TDP) Типы памяти Графика
Процессор Intel® Core™ i9-9980XE 3,0 ГГц 24,75 МБ 18/36 165 Вт Четыре канала DDR4-2666 Нет
Процессор Intel® Core™ i9-9960X 3,1 ГГц 22 МБ 16/32 165 Вт Четыре канала DDR4-2666 Нет
Процессор Intel® Core™ i9-9940X 3,3 ГГц 19,25 МБ 14/28 165 Вт Четыре канала DDR4-2666 Нет
Процессор Intel® Core™ i9-9920X 3,5 ГГц 19,25 МБ 12/24 165 Вт Четыре канала DDR4-2666 Нет
Процессор Intel® Core™ i9-9900X 3,5 ГГц 19,25 МБ 10/20 165 Вт Четыре канала DDR4-2666 Нет
Процессор Intel® Core™ i9-9820X 3,3 ГГц 16,5 МБ 10/20 165 Вт Четыре канала DDR4-2666 Нет
Процессор Intel® Core™ i7-9800X 3,8 ГГц 16,5 МБ 8/16 165 Вт Четыре канала DDR4-2666 Нет

Выберите процессор Intel® Core™ с разблокированным множителем, чтобы выполнить оверклокинг 1 ЦП и узнать, насколько быстро может работать ваш ПК.

Доступность функций и преимуществ технологий Intel® зависит от конфигурации системы, а для их работы может потребоваться оборудование, программное обеспечение или активация сервисов. Значения производительности могут изменяться в зависимости от конфигурации системы. Проконсультируйтесь с производителем или продавцом системы или изучите подробную информацию на веб-сайте http://www.intel.ru/content/www/ru/ru/processors/core/core-i7ee-processor.html.

Изменение тактовой частоты или напряжения может привести к повреждениям или сократить срок службы процессора и других системных компонентов, а также может привести к ухудшению стабильности и производительности системы. В случае изменения спецификаций процессора продукция может не подлежать гарантийному обслуживанию. За дополнительной информацией обращайтесь к производителям системы и компонентов.

источник