Меню Рубрики

I2c что это такое и как им пользоваться

В современной бытовой технике, промышленной электронике и различном телекоммуникационном оборудовании достаточно часто можно встретить аналогичные решения, хотя изделия могут быть практически не связаны между собой. К примеру, практически каждая система включает в себя следующее:

  • определенный «умный» узел управления, который в преимущественном большинстве случаев представляет собой однокристалльную микроЭВМ;
  • узлы общего назначения наподобие буферов ЖК, ОЗУ, портов ввода/вывода, ЭСПЗУ или же специализированные преобразователи данных;
  • специфические узлы, включающие в себя схемы цифровой настройки и обрабатывания сигналов для видео- и радиосистем.

Чтобы обеспечить максимально эффективное использование таких общих решений для выгоды конструкторов и самих производителей, а также для повышения общей степени производительности различной аппаратуры и упрощения применяемых схемотехнических узлов, компания Philips задалась целью разработать предельно простую двухпроводную двунаправленную шину, обеспечивающую наиболее продуктивное межмикросхемное управление. Данная шина обеспечивает передачу данных через интерфейс I2C.

На сегодняшний день ассортимент указанного производителя включает в себя более 150 КМОП, а также биполярных устройств, совместимых с I2C и предназначенных для ведения работы в любых перечисленных категориях. При этом стоит отметить, что интерфейс I2C является изначально встроенным во все совместимые устройства, за счет чего они и могут безо всяких сложностей поддерживать связь между собой при использовании специальной шины. За счет применения такого конструкторского решения получилось решить достаточно большое количество проблем сопряжения различного оборудования, что является довольно характерным для сферы разработки цифровых систем.

Даже если посмотреть кратко описание интерфейсов UART, SPI, I2C, можно выделить следующие преимущества последнего:

  • Для работы нужно всего две линии – синхронизации и данных. Любое устройство, которое подключается к такой шине, в дальнейшем может программно адресоваться по абсолютно уникальному адресу. В любой момент существует простое отношение, позволяющее ведущим работать в качестве ведущего-передатчика или ведущего-приемника.
  • Данная шина предусматривает возможность иметь сразу несколько ведущих, предоставляя все необходимые средства для определения коллизий, а также арбитраж, позволяющий предотвратить повреждение данных в том случае, если два или большее количество ведущих начинает одновременно передавать информацию. В стандартном режиме предусматривается только передача последовательных восьмибитных данных при скорости не более 100 кбит/с, а в быстром режиме этот порог может быть увеличен в четыре раза.
  • В микросхемах используется специальный встроенный фильтр, который достаточно эффективно подавляет всплески и обеспечивает максимальную целостность данных.
  • Предельно возможное количество микросхем, которые могут быть подсоединены к одной шине, ограничивается только ее предельно возможной емкостью, составляющей 400 пФ.

Интерфейс I2C, а также все совместимые микросхемы позволяют существенно ускорить процедуру разработки, от функциональной схемы до ее конечного прототипа. При этом стоит отметить, что за счет возможности подключения таких микросхем непосредственно к шине без использования всевозможных дополнительных цепей обеспечивается простор для дальнейшей модернизации и модификации системы прототипа посредством отключения и подключения от шины различных устройств.

Есть масса преимуществ, которые выделяют интерфейс I2C. Описание, в частности, позволяет увидеть следующие достоинства для конструкторов:

  • Блоки на функциональной схеме всецело соответствуют микросхемам, и при этом обеспечивается достаточно быстрый переход от функциональных к принципиальным.
  • Нет никакой необходимости заниматься разработкой шинных интерфейсов, потому что шина уже изначально интегрирована в специальные микросхемы.
  • Интегрированные протоколы передачи информации и адресация устройств предоставляют системе возможность быть полностью программно определяемой.
  • Одинаковые типы микросхем при необходимости можно использовать в абсолютно разных приложениях.
  • Общее время разработки существенно снижается за счет того, что конструкторы довольно быстро могут ознакомиться с наиболее часто используемыми функциональными блоками, а также всевозможными микросхемами.
  • При желании можно добавлять или убирать из системы микросхемы, и при этом не оказывать особого влияния на прочее оборудование, подключенное к одной шине.
  • Общее время разработки программного обеспечения можно значительно снизить за счет того, что здесь допускается применение библиотеки повторно применяемых программных модулей.

Помимо всего прочего, стоит отметить предельно простую процедуру диагностики возникших сбоев и дальнейшую отладку, которой отличается интерфейс I2C. Описание говорит о том, что при необходимости можно безо всякого труда моментально отслеживать даже незначительные отклонения в работе такого оборудования и, соответственно, принимать соответствующие меры. Также стоит отметить, что конструкторы получают специальные решения, которые, в частности, являются довольно привлекательными для различного портативного оборудования и систем, предусматривающих батарейное питание, используя I2C интерфейс. Описание на русском также указывает на то, что его применение позволяет обеспечить следующие немаловажные достоинства:

  • Достаточно высокую степень устойчивости к любым возникающим помехам.
  • Предельно низкое потребление энергии.
  • Широчайший диапазон питающего напряжения.
  • Широкий температурный диапазон.

Стоит отметить, что не только конструкторы, но и технологи достаточно часто в последнее время начали использовать специализированный I2C интерфейс. Описание на русском указывает довольно широкий диапазон достоинств, которые обеспечиваются этой категории специалистов:

  • Стандартная двухпроводная последовательная шина с таким интерфейсом позволяет минимизировать соединения между микросхемами, то есть в них присутствует меньше контактов и требуется меньшее количество дорожек, благодаря чему печатные платы становятся не такими дорогими и имеют гораздо меньшие габариты.
  • Полностью интегрированный I2C интерфейс LCD1602 или какой-то другой вариант полностью устраняет необходимость в использовании дешифраторов адреса, а также другой внешней мелкой логике.
  • Предусматривается возможность использования одновременно нескольких ведущих на такой шине, благодаря чему существенно ускоряется тестирование и последующая настройка оборудования, так как шина может быть подключена к компьютеру сборочной линии.
  • Доступность совместимых с этим интерфейсом микросхем в VSO, SO и специализированном DIL-корпусе позволяет существенно снизить требования к размеру устройства.

Это только краткий список преимуществ, которыми отличается I2C интерфейс LCD1602 и другие. Кроме того, совместимые микросхемы позволяют значительно увеличить гибкость используемой системы, обеспечивая предельно простое конструирование различных вариантов оборудования, а также относительно легкую модернизацию для дальнейшей поддержки разработки на современном уровне. Таким образом, можно разработать целое семейство различного оборудования, используя в качестве основы определенную базовую модель.

Дальнейшая модернизация оборудования и расширение его функций могут осуществляться посредством стандартного подключения к шине соответствующей микросхемы, использующей 2C интерфейс Arduino или какой-нибудь другой из доступного перечня. Если требуется обеспечение большей ПЗУ, то в таком случае достаточно будет только выбрать другой микроконтроллер, имеющий увеличенный объем ПЗУ. Так как обновленные микросхемы при необходимости способны полностью заместить старые, можно запросто добавлять новые свойства в оборудование или повышать его общую производительность посредством обычного отсоединения уже устаревших микросхем и дальнейшей замены их на более новое оборудование.

За счет того, что шина имеет двухпроводную природу, а также возможность программной адресации, для ACCESS.bus одной из наиболее идеальных платформ является именно I2C интерфейс. Спецификация (описание на русском представлено в статье) данного устройства делает его гораздо более дешевой альтернативой активно использующемуся ранее интерфейсу RS-232C для подсоединения различной периферии к компьютерам, используя стандартный четырехконтактный коннектор.

Для современных приложений 8-битного управления, в которых используются микроконтроллеры, предусматривается возможность установки некоторых конструкторских критериев:

  • полная система в преимущественном большинстве случае включает в себя один микроконтроллер и прочие периферийные устройства, в том числе память и всевозможные порты ввода/вывода;
  • общая стоимость объединения различных устройств внутри одной системы должна быть предельно минимизирована;
  • система, на которую возлагаются функции управления, не предусматривает необходимость в обеспечении высокоскоростной передачи информации;
  • общая эффективность непосредственно зависит от выбранного оборудования, а также от природы соединяющей шины.

Для разработки системы, полностью соответствующей перечисленным критериям, нужно использовать шину, в которой будет использоваться последовательный интерфейс I2C. Несмотря на то что в последовательной шине нет пропускной способности параллельных, ей требуется меньшее количество соединений, а также меньше контактов микросхем. При этом не стоит забывать о том, что шина включает в себя не только соединяющие провода, но еще и различные процедуры и форматы, необходимые для обеспечения связи внутри системы.

Устройства, для связи которых используется программная эмуляция интерфейса I2C или соответствующая шина, должны иметь определенный протокол, который позволяет упредить различные возможности столкновений, потери или же блокирования информации. У быстрых устройств должна быть возможность связаться с медленными, и при этом система не должна зависеть от подключенного к ней оборудования, так как в противном случае все улучшения и модификации не смогут быть использованы. Также нужно разрабатывать процедуру, с помощью которой реально установить, какое конкретно устройство на данный момент обеспечивает управление шиной и в какой момент времени. Помимо этого, если различные устройства, имеющие разные тактовые частоты, подключены к одной шине, нужно определиться с источником ее синхронизации. Всем этим критериям соответствует I2C интерфейс для AVR и любые другие из этого перечня.

Шина I2C может поддерживать любые использующиеся технологии изготовления микросхем. Интерфейс I2C LabVIEW и другие аналогичные ему предусматривают использования двух линий для переноса информации – данных и синхронизации. Любое устройство, подключенное таким образом, распознается за счет уникального адреса вне зависимости от того, идет ли речь о ЖКИ-буфере, микроконтроллере, памяти или интерфейсе клавиатуры, и при этом может работать в качестве приемника или передатчика в зависимости от того, для чего конкретно предназначается данное оборудование.

В преимущественном большинстве случаев ЖКИ-буфер представляет собой стандартный приемник, а память может не только принимать, но и передавать различные данные. Помимо всего прочего, по процессу перемещения информации приборы можно классифицировать как ведомые и ведущие.

В данном случае ведущим называется устройство, которым инициируется передача данных, а также вырабатываются сигналы синхронизации. При этом любые адресуемые приборы будут считаться по отношению к нему ведомыми.

Интерфейс связи I2C предусматривает наличие сразу нескольких ведущих, то есть более чем одно устройство, способное осуществлять управление шиной, способно к ней подключаться. Возможность использования более одного микроконтроллера в одной шине говорит о том, что более чем от одного ведущего может осуществляться пересылка в определенный момент времени. Чтобы устранить потенциальный хаос, который рискует появиться при возникновении такой ситуации, разработана специализированная процедура арбитража, которую использует I2C интерфейс. Расширители и другие приборы предусматривают подключение устройств к шине по так называемому правилу монтажного И.

Генерация синхросигнала представляет собой обязанность ведущего, и каждый из них вырабатывает собственный сигнал в процессе пересылки данных, и в дальнейшем он может изменяться только в том случае, если его «вытягивает» медленное ведомое устройство или другое ведущее при возникновении столкновения.

Как SCL, так и SDA представляют собой двунаправленные линии, которые подключаются к положительному источнику питания при помощи подтягивающего резистора. Когда шина оказывается абсолютно свободной, каждая линия пребывает в высоком положении. Выходные каскады устройств, которые подключены к шине, должны быть с открытым стоком или открытым коллектором, чтобы могла обеспечиваться функция монтажного И. Информация через I2C интерфейс может передаваться при скорости не более 400 кбит/с в быстром режиме, в то время как в стандартном скорость не превышает 100 кбит/с. Общее же количество устройств, которые могут быть одновременно подключены к шине, зависит только от одного параметра. Это емкость линии, составляющая не более 400 пф.

Читайте также:  Как довести жену до струйного оргазма

Подтверждение представляет собой обязательную процедуру в процессе передачи данных. Ведущий генерирует соответствующий импульс синхронизации, в то время как передатчик отпускает линию SDA в течение данного синхроимпульса как подтверждение. После этого приемник должен обеспечить стабильное удержание линии SDA в течение высокого состояния синхроимпульса в стабильно низком состоянии. В данном случае нужно обязательно принимать во внимание время установки и удержания.

В преимущественном большинстве случаев адресованный приемник должен в обязательном порядке сгенерировать подтверждение после каждого полученного байта, и единственным исключением здесь являются только те ситуации, когда начало посылки включает в себя адрес CBUS.

Если у ведомого-приемника нет возможности отправить подтверждение собственного адреса, нужно оставлять линию данных в высоком состоянии, и после этого у ведущего будет возможность выдачи сигнала «Стоп», который прервет отправку всей информации. Если же адрес был подтвержден, но при этом ведомый не может в течение длительного времени больше принимать какие-либо данные, ведущим также должна быть прервана посылка. Чтобы это сделать, ведомый не подтверждает следующий полученный байт и просто оставляет линию данных в высоком состоянии, вследствие чего ведущим генерируется сигнал «Стоп».

Если же в процедуре пересылки предусматривается наличие ведущего-приемника, то в таком случае он должен сообщать ведомому об окончании проведенной передачи, и делается это посредством неподтверждения последнего полученного байта. При этом ведомый-передатчик сразу освобождает линию данных, чтобы ведущий мог выдать сигнал «Стоп» или снова повторить сигнал «Старт».

Чтобы проверить работоспособность оборудования, можно попробовать ввести стандартные примеры скетчей для интерфейса I2C в Arduino, как на фото выше.

Ведущим может начинаться пересылка информации только после полного освобождения шины, но при этом два и более ведущих могут провести генерирование сигнала о старте при времени минимального удерживания. Это в конечном итоге приводит к определенному сигналу «Старт» на шине.

Работа арбитража осуществляется на шине SDA в те моменты, пока SCL-шина пребывает в высоком состоянии. Если один из ведущих начинает передавать на линию данных низкий уровень, но при этом другой – высокий, то последний полностью отключается от нее, потому что состояние SDL является не соответствующим высокому состоянию его внутренней линии.

Продолжение арбитража может осуществляться на протяжении нескольких бит. За счет того, что сначала осуществляется передача адреса, а потом данных, арбитраж может иметь длительность до окончания адреса, а если ведущими будет адресоваться одно и то же устройство, то в таком случае в арбитраже будут принимать участие и различные данные. Вследствие такой схемы арбитража при возникновении каких-либо столкновений данные не потеряются.

Если ведущий проигрывает арбитраж, то в таком случае он может выдавать импульсы синхронизации в SCL до конца байта, в течение которого и был потерян доступ.

источник

  • Arduino UNO или другая совместимая;
  • цифровой потенциометр AD5171 или другой с управлением по шине IIC;
  • светодиод любой (к примеру, вот из такого набора);
  • резистор на 220 Ом (рекомендую набор резисторов с номиналами от 10 Ом до 1 МОм);
  • 2 резистора по 4,7 кОм (из того же набора);
  • макетная плата;
  • соединительные провода (например, вот хороший набор);
  • компьютер с Arduino IDE.

Последовательный протокол обмена данными IIC (также называемый I2C – Inter-Integrated Circuits, межмикросхемное соединение) использует для передачи данных две двунаправленные линии связи, которые называются шина последовательных данных SDA (Serial Data) и шина тактирования SCL (Serial Clock). Также имеются две линии для питания. Шины SDA и SCL подтягиваются к шине питания через резисторы.

В сети есть хотя бы одно ведущее устройство (Master), которое инициализирует передачу данных и генерирует сигналы синхронизации. В сети также есть ведомые устройства (Slave), которые передают данные по запросу ведущего. У каждого ведомого устройства есть уникальный адрес, по которому ведущий и обращается к нему. Адрес устройства указывается в паспорте (datasheet). К одной шине I2C может быть подключено до 127 устройств, в том числе несколько ведущих. К шине можно подключать устройства в процессе работы, т.е. она поддерживает «горячее подключение».

Описание интерфейса I2C

Давайте рассмотрим временную диаграмму обмена по протоколу I2C. Есть несколько различающихся вариантов, рассмотрим один из распространённых. Воспользуемся логическим анализатором, подключённым к шинам SCL и SDA.

Мастер инициирует обмен. Для этого он начинает генерировать тактовые импульсы и посылает их по линии SCL пачкой из 9-ти штук. Одновременно на линии данных SDA он выставляет адрес устройства, с которым необходимо установить связь, которые тактируются первыми 7-ми тактовыми импульсами (отсюда ограничение на диапазон адресов: 2 7 = 128 минус нулевой адрес). Следующий бит посылки – это код операции (чтение или запись) и ещё один бит – бит подтверждения (ACK), что ведомое устройство приняло запрос. Если бит подтверждения не пришёл, на этом обмен заканчивается. Или мастер продолжает посылать повторные запросы.

Это проиллюстрировано на рисунке ниже. Задача такая: подключиться к ведомому устройству с адресом 0x27 и передать ему строку «SOLTAU.RU». В первом случае, для примера, отключим ведомое устройство от шины. Видно, что мастер пытается установить связь с устройством с адресом 0x27, но не получает подтверждения (NAK). Обмен заканчивается.

Попытка мастера установить соединение с ведомым по I2C

Теперь подключим к шине I2C ведомое устройство и повторим операцию. Ситуация изменилась. На первый пакет с адресом пришло подтверждение (ACK) от ведомого. Обмен продолжился. Информация передаётся также 9-битовыми посылками, но теперь 8 битов занимают данные и 1 бит – бит подтверждения получения ведомым каждого байта данных. Если в какой-то момент связь оборвётся и бит подтверждения не придёт, мастер прекратит передачу.

Временная диаграмма обмена по протоколу I2C

Arduino использует для работы по интерфейсу I2C два порта. Например, в Arduino UNO и Arduino Nano аналоговый порт A4 соответствует SDA, аналоговый порт A5 соответствует SCL.

Реализация I2C в Arduino UNO и Nano

Для других моделей плат соответствие выводов такое:

Плата Пин SDA Пин SCL
Arduino Uno, Nano, Pro и Pro Mini A4 A5
Arduino Mega 20 21
Arduino Leonardo 2 3
Arduino Due 20, SDA1 21, SCL1

Для облегчения обмена данными с устройствами по шине I2C для Arduino написана стандартная библиотека Wire. Она имеет следующие функции:

Функция Назначение
begin(address) инициализация библиотеки и подключение к шине I2C; если не указан адрес, то присоединённое устройство считается ведущим; используется 7-битная адресация;
requestFrom() используется ведущим устройством для запроса определённого количества байтов от ведомого;
beginTransmission(address) начало передачи данных к ведомому устройству по определённому адресу;
endTransmission() прекращение передачи данных ведомому;
write() запись данных от ведомого в ответ на запрос;
available() возвращает количество байт информации, доступных для приёма от ведомого;
read() чтение байта, переданного от ведомого ведущему или от ведущего ведомому;
onReceive() указывает на функцию, которая должна быть вызвана, когда ведомое устройство получит передачу от ведущего;
onRequest() указывает на функцию, которая должна быть вызвана, когда ведущее устройство получит передачу от ведомого.

Давайте посмотрим, как работать с шиной I2C с помощью Arduino.

Сначала соберём схему, как на рисунке. Будем управлять яркостью светодиода, используя цифровой 64-позиционный потенциометр AD5171 (см. техническое описание), который подключается к шине I2C. Адрес, по которому мы будем обращаться к потенциометру – 0x2c (44 в десятичной системе).

Подключение цифрового потенциометра к Arduino по шине I2C

Рассмотрим диаграммы информационного обмена с цифровым потенциометром AD5171, представленные в техническом описании:

Рассмотрим диаграммы чтения и записи цифрового потенциометра AD5171

Нас тут интересует диаграмма записи данных в регистр RDAC. Этот регистр используется для управления сопротивлением потенциометра.

Откроем из примеров библиотеки «Wire» скетч: Файл Образцы Wire digital_potentiometer. Загрузим его в память Arduino.

После включения вы видите, как яркость светодиода циклически нарастает, а потом гаснет. При этом мы управляем потенциометром с помощью Arduino по шине I2C.

По ссылкам внизу статьи, в разделе похожих материалов (по тегу), можно найти дополнительные примеры взаимодействия с различными устройствами по интерфейсу IIC, в том числе примеры чтения и записи.

Доступно и интересно рассказывает о шине I2C Джереми Блюм в своём видео:

источник

  • Arduino UNO или другая совместимая;
  • цифровой потенциометр AD5171 или другой с управлением по шине IIC;
  • светодиод любой (к примеру, вот из такого набора);
  • резистор на 220 Ом (рекомендую набор резисторов с номиналами от 10 Ом до 1 МОм);
  • 2 резистора по 4,7 кОм (из того же набора);
  • макетная плата;
  • соединительные провода (например, вот хороший набор);
  • компьютер с Arduino IDE.

Последовательный протокол обмена данными IIC (также называемый I2C – Inter-Integrated Circuits, межмикросхемное соединение) использует для передачи данных две двунаправленные линии связи, которые называются шина последовательных данных SDA (Serial Data) и шина тактирования SCL (Serial Clock). Также имеются две линии для питания. Шины SDA и SCL подтягиваются к шине питания через резисторы.

В сети есть хотя бы одно ведущее устройство (Master), которое инициализирует передачу данных и генерирует сигналы синхронизации. В сети также есть ведомые устройства (Slave), которые передают данные по запросу ведущего. У каждого ведомого устройства есть уникальный адрес, по которому ведущий и обращается к нему. Адрес устройства указывается в паспорте (datasheet). К одной шине I2C может быть подключено до 127 устройств, в том числе несколько ведущих. К шине можно подключать устройства в процессе работы, т.е. она поддерживает «горячее подключение».

Описание интерфейса I2C

Давайте рассмотрим временную диаграмму обмена по протоколу I2C. Есть несколько различающихся вариантов, рассмотрим один из распространённых. Воспользуемся логическим анализатором, подключённым к шинам SCL и SDA.

Мастер инициирует обмен. Для этого он начинает генерировать тактовые импульсы и посылает их по линии SCL пачкой из 9-ти штук. Одновременно на линии данных SDA он выставляет адрес устройства, с которым необходимо установить связь, которые тактируются первыми 7-ми тактовыми импульсами (отсюда ограничение на диапазон адресов: 2 7 = 128 минус нулевой адрес). Следующий бит посылки – это код операции (чтение или запись) и ещё один бит – бит подтверждения (ACK), что ведомое устройство приняло запрос. Если бит подтверждения не пришёл, на этом обмен заканчивается. Или мастер продолжает посылать повторные запросы.

Это проиллюстрировано на рисунке ниже. Задача такая: подключиться к ведомому устройству с адресом 0x27 и передать ему строку «SOLTAU.RU». В первом случае, для примера, отключим ведомое устройство от шины. Видно, что мастер пытается установить связь с устройством с адресом 0x27, но не получает подтверждения (NAK). Обмен заканчивается.

Попытка мастера установить соединение с ведомым по I2C

Теперь подключим к шине I2C ведомое устройство и повторим операцию. Ситуация изменилась. На первый пакет с адресом пришло подтверждение (ACK) от ведомого. Обмен продолжился. Информация передаётся также 9-битовыми посылками, но теперь 8 битов занимают данные и 1 бит – бит подтверждения получения ведомым каждого байта данных. Если в какой-то момент связь оборвётся и бит подтверждения не придёт, мастер прекратит передачу.

Читайте также:  Сколько варить яйца в холодной воде

Временная диаграмма обмена по протоколу I2C

Arduino использует для работы по интерфейсу I2C два порта. Например, в Arduino UNO и Arduino Nano аналоговый порт A4 соответствует SDA, аналоговый порт A5 соответствует SCL.

Реализация I2C в Arduino UNO и Nano

Для других моделей плат соответствие выводов такое:

Плата Пин SDA Пин SCL
Arduino Uno, Nano, Pro и Pro Mini A4 A5
Arduino Mega 20 21
Arduino Leonardo 2 3
Arduino Due 20, SDA1 21, SCL1

Для облегчения обмена данными с устройствами по шине I2C для Arduino написана стандартная библиотека Wire. Она имеет следующие функции:

Функция Назначение
begin(address) инициализация библиотеки и подключение к шине I2C; если не указан адрес, то присоединённое устройство считается ведущим; используется 7-битная адресация;
requestFrom() используется ведущим устройством для запроса определённого количества байтов от ведомого;
beginTransmission(address) начало передачи данных к ведомому устройству по определённому адресу;
endTransmission() прекращение передачи данных ведомому;
write() запись данных от ведомого в ответ на запрос;
available() возвращает количество байт информации, доступных для приёма от ведомого;
read() чтение байта, переданного от ведомого ведущему или от ведущего ведомому;
onReceive() указывает на функцию, которая должна быть вызвана, когда ведомое устройство получит передачу от ведущего;
onRequest() указывает на функцию, которая должна быть вызвана, когда ведущее устройство получит передачу от ведомого.

Давайте посмотрим, как работать с шиной I2C с помощью Arduino.

Сначала соберём схему, как на рисунке. Будем управлять яркостью светодиода, используя цифровой 64-позиционный потенциометр AD5171 (см. техническое описание), который подключается к шине I2C. Адрес, по которому мы будем обращаться к потенциометру – 0x2c (44 в десятичной системе).

Подключение цифрового потенциометра к Arduino по шине I2C

Рассмотрим диаграммы информационного обмена с цифровым потенциометром AD5171, представленные в техническом описании:

Рассмотрим диаграммы чтения и записи цифрового потенциометра AD5171

Нас тут интересует диаграмма записи данных в регистр RDAC. Этот регистр используется для управления сопротивлением потенциометра.

Откроем из примеров библиотеки «Wire» скетч: Файл Образцы Wire digital_potentiometer. Загрузим его в память Arduino.

После включения вы видите, как яркость светодиода циклически нарастает, а потом гаснет. При этом мы управляем потенциометром с помощью Arduino по шине I2C.

По ссылкам внизу статьи, в разделе похожих материалов (по тегу), можно найти дополнительные примеры взаимодействия с различными устройствами по интерфейсу IIC, в том числе примеры чтения и записи.

Доступно и интересно рассказывает о шине I2C Джереми Блюм в своём видео:

источник

Имеется большое число различных синхронных последовательных протоколов. Многие из них широко применяются, и для их реализации доступны необходимые аппаратные средства. Недостаток этих интерфейсов состоит в том, что при подключении нескольких устройств они требуют использования, как минимум, одной дополнительной управляющей линии для выбора активного устройства, которое в настоящий момент должно передавать или получать информацию.

Этот недостаток отсутствует у интерфейса I 2 C (Inter-Integrated Circuit). Он был первоначально разработан фирмой Philips в конце 1970-х годов специально для того, чтобы обеспечивать такой способ подключения периферийных устройств к микропроцессорам, который не требовал бы использования традиционных шин адреса, данных и управления, а кроме того, позволял бы нескольким микропроцессорам работать с одними и теми же периферийными устройствами (multimastering). Philips запатентовал название интерфейса и до 2007 у различных производителей этот микроконтроллер имел свое название. Например, в микроконтроллерах ATmega, на которых строится Arduino, этот интерфейс носит название 2-wire Serial Interface (двухпроводной последовательный интерфейс).

Интерфейс RS-232 использует асинхронный протокол передачи данных, потому что приемник не получает какого-либо сигнала тактирования в явном виде. На рисунке ниже показаны временные диаграммы сигналов при синхронной передаче данных. Здесь приемник фиксирует данные на линии Data по переднему или заднему фронту синхроимпульсов Clock.

Синхронная передача данных

Интерфейс I 2 C использует всего две линии — они именуются SCL (Serial Clock) и SDA (Serial Data). Первая предназначена для передачи синхроимпульсов (они формируются тем устройством, которое в настоящий момент передает данные), а вторая — для передачи самих данных и команд, управляющих этим процессом. Обе линии имеют открытый коллектор (как и во многих других случаях, когда необходимо, чтобы к одной линии мого подключаться несколько различных устройств), поэтому требуют подключения «подтягивающих» резисторов сопротивлением 1-10 кОм.

Для примера на рисунке ниже показана структурная схема устройства управления стереосистемой.

Устройство управления стереосистемой на основе интерфейса I 2 C

В обмене информацией по шине I 2 C всегда принимают участие два устройства — ведущее (master, задатчик) и ведомое. Ведущее устройство вырабатывает синхроимпульсы, а принимать или передавать данные может как задатчик, так и ведомое устройство.

Пока ни одно устройство не начало передачу данных, благодаря подтягивающим резисторам на обоих линиях шины I 2 C действует напряжение высокого уровня. Если какое-либо устройство собирается начать передачу данных, оно сначала проверяет, свободна ли шина. Ведь в каждый момент времени ведущим на шине может быть только одно устройство. Напряжение высокого уровня на линии SCL показывает, что шина пока свободна.

Перед началом процесса передачи задатчик устанавливает напряжение низкого уровня сначала на линии SDA, а затем на линии SCL (см. рисунок ниже). В процессе передачи данных такое состояние линий невозможно, поскольку сигнал на линии SDA не должен изменяться во время действия тактового импульса на линии SCL.

Начало и конец передачи данных по интерфейсу I 2 C

Затем начинается передача данных от ведущего устройства к ведомому (slave) или наоборот, но в любом случае источником синхроимпульсов является задатчик. Данные фиксируются приемником по заднему фронту синхроимпульсов.

В конце передачи ведущее устройство прекращает генерацию синхроимпульсов; в результате на линии SCL благодаря подтягивающему резистору устанавливается напряжение высокого уровня, после этого отключается передатчик, из-за чего устанавливается высокий уровень на линии SDA — иными словами, повторяется ситуация, обратная той, что наблюдалась перед началом передачи.

В отличие от интерфейса RS-232, передача данных производится начиная со старшего бита; при этом используются обычные логические уровни микросхем ТТЛ/КМОП. После передачи последнего (восьмого) бита каждого байта во время действия очередного синхроимпульса передатчик отключается от линии SDA, чтобы дать возможность приемнику подтвердить получение данных. Для этого приемник должен выставить на линии SDA сигнал низкого уровня. Перед посылкой очередного бита сигнал низкого уровня действует на обеих линиях. Временные диаграммы на рисунке ниже иллюстрируют процесс передачи одного байта данных по интерфейсу I 2 C.

Передача данных по интерфейсу I 2 C

В некоторых случаях бит подтверждения передается высоким уровнем сигнала, даже если прием прошел успешно. Это показывает, что обмен закончен и передатчик (обычно являющийся либо ведущим устройством, либо задатчиком, который не должен сам начинать операцию обмена) может подготовиться к получению следующего запроса. Этот режим используется, когда микроконтроллер запрашивает данные у какого-либо периферийного устройства. В этом случае микроконтроллер является приемником данных. Если вместо бита подтверждения микроконтроллер выставит сигнал высокого уровня, то ведомое устройство «поймет», что следующую порцию данных пересылать не нужно.

Минимальная скорость передачи по интерфейсу I 2 C ничем не ограничена. И передатчик, и приемник могут при необходимости замедлять процесс обмена на неопределенное время. Задатчик делает это, удерживая сигнал высокого уровня на линии SCL после приема или передачи предыдущего бита. Ведомое устройство может замедлить работу задатчика, удерживая сигнал на линии SCL на низком уровне после приема или передачи очередного бита (увидев это, задатчик не сможет выставить на линии SCL следующий синхроимпульс).

Cуществуют три максимальные скорости передачи. В так называемом стандартном режиме это 100 Кбит/с (частота синхроимпульсов 100 кГц), в быстром режиме — 400 Кбит/с (частота синхроимпульсов 400 кГц), в высокоскоростном режиме — 3.4 Мбит/с и в ультравысокоскоростном режиме — до 5 Мбит/с. Правда, устройств, работающих на мегабитных скоростях еще нужно поискать. Помимо скоростных ограничений, есть и ограничения на максимальное количество подключенных к шине I 2 C устройств. В стандартном режиме можно адресовать 127 устройств (7-битный адрес), в быстром режиме до 1023 устройств (10-битный адрес). На рисунке ниже показаны минимальные временные задержки для обоих режимов (все значения указаны в микросекундах).

Минимальные временные задержки для двух режимов передачи данных по интерфейсу I 2 C

На рисунке ниже показан формат команд, используемых для управления процессом передачи данных по интерфейсу I 2 C.

Формат управляющих команд интерфейcа I 2 C

Адрес получателя задается семью битами. Старшие четыре бита адреса определяют тип устройства, а оставшиеся три младших бита указывают, какому именно устройству (из восьми возможных) этого типа предназначена посылаемая информация.

В некоторых случаях требуется чуть усложнять протокол обмена. Например, при чтении информации из памяти EEPROM (или записи данных в память) задатчик должен сначала установить стартовую последовательность, чтобы переслать адрес нужной ячейки памяти, а затем снова выполнить стартовую последовательность, чтобы теперь уже считать данные из памяти (или записать их).

Для того, чтобы ведущими на шине могли быть различные устройства, необходим какой-либо протокол разрешения коллизий (конфликтов). Коллизия возникает, когда два устройства, одновременно проверив состояние шины и, обнаружив, что она пока свободна, начинают передачу данных.

Конфликты разрешаются благодаря тому, что на линии с открытым коллектором подача сигнала высокого уровня реализуется, на самом деле, простым отключением активного устройства (вспомните о «подтягивающих» резисторах). В этом случае, побеждает всегда то устройство, которое выставило сигнал низкого уровня. Тогда втрое устройство, «увидев», что действующий на линии уровень напряжения не совпадает с тем, который оно пытается установить, «понимает», что на шине активен еще один задатчик, и на время отключается, чтобы дать ему возможность беспрепятственно закончить обмен информацией.

Реализация интерфейса I 2 C с помощью микроконтроллеров весьма проста. Однако, из-за программной его реализации трудно достичь высоких скоростей передачи. Даже максимальная скорость стандартного режима (100 Кбит/с) может оказаться недостижимой.

Программная реализация интерфейса I 2 C все же является наилучшим решением, если кроме микроконтроллера на шине не может быть других задатчиков. Ведь в этом случае, не требуется синхронизировать его работу с какими-либо быстрыми устройствами, в которых используется аппаратная реализация этого интерфейса.

Полную спецификацию и руководство пользователя для шины I2C можно скачать по ссылке:

источник

Интерфейс I2C (или по другому IIC) — это достаточно широко распространённый сетевой последовательный интерфейс, придуманный фирмой Philips и завоевавший популярность относительно высокой скоростью передачи данных (обычно до 100 кбит/с, в современных микросхемах до 400 кбит/с), дешевизной и простотой реализации.

Физически сеть представляет собой двухпроводную шину, линии которой называются DATA и CLOCK (необходим ещё и третий провод — земля, но интерфейс принято называть двухпроводным по количеству сигнальных проводов). Соответственно, по линии DATA передаются данные, линия CLOCK служит для тактирования. К шине может быть подключено до 128 абонентов, каждый со своим уникальным номером. В каждый момент времени информация передаётся только одним абонентом и только в одну сторону.

Читайте также:  Как надо правильно надо краситься

Устройства I2C имеют выход с «открытым коллектором». Когда выходной транзистор закрыт — на соответствующей линии через внешний подтягивающий резистор устанавливается высокий уровень, когда выходной транзистор открыт — он притягивает соответствующую линию к земле и на ней устанавливается низкий уровень (смотрите рисунок). Резисторы имеют номинал от нескольких килоОм до нескольких десятков килоОм (чем выше скорость — тем меньше номинал резисторов, но больше энергопотребление). На рисунке треугольниками на входе показано, что входы высокоомные и, соответственно, влияния на уровни сигналов на линиях они не оказывают, а только «считывают» эти уровни. Обычно используются уровни 5В или 3,3В.

Любое устройство на шине I2C может быть одного из двух типов: Master (ведущий) или Slave (ведомый). Обмен данными происходит сеансами. «Мастер»-устройство полностью управляет сеансом: инициирует сеанс обмена данными, управляет передачей, подавая тактовые импульсы на линию Clock, и завершает сеанс.

Кроме этого, в зависимости от направления передачи данных и «Мастер» и «Слэйв»-устройства могут быть «Приёмниками» или «Передатчиками». Когда «Мастер» принимает данные от «Слэйва» — он является «Приёмником», а «Слэйв» — «Передатчиком». Когда же «Слэйв» принимает данные от «Мастера», то он уже является «Приёмником», а «Мастер» в этом случае является «Передатчиком».

Не надо путать тип устройства «Мастер» со статусом «Передатчика». Несмотря на то, что при чтении «Мастером» информации из «Слэйва», последний выставляет данные на шину Data, делает он это только тогда, когда «Мастер» ему это разрешит, установкой соответствующего уровня на линии Clock. Так что, хотя «Слэйв» в этом случае и управляет шиной Data, — самим обменом всё равно управляет «Мастер».

В режиме ожидания (когда не идёт сеанс обмена данными) обе сигнальные линии (Data и Clock) находятся в состоянии высокого уровня (притянуты к питанию).

Каждый сеанс обмена начинается с подачи «Мастером» так называемого Start-условия. «Старт-условие» — это изменение уровня на линии Data с высокого на низкий при наличии высокого уровня на линии Clock.

После подачи «Старт-условия» первым делом «Мастер» должен сказать с кем он хочет пообщаться и указать, что именно он хочет — передавать данные в устройство или читать их из него. Для этого он выдаёт на шину 7-ми битный адрес «Слэйв» устройства (по другому говорят: «адресует «Слэйв» устройство»), с которым хочет общаться, и один бит, указывающий направление передачи данных (0 — если от «Мастера» к «Слэйву» и 1 — если от «Слэйва» к «Мастеру»). Первый байт после подачи «Старт»-условия всегда всеми «Слэйвами» воспринимается как адресация.

Поскольку направление передачи данных указывается при открытии сеанса вместе с адресацией устройства, то для того, чтобы изменить это направление, необходимо открывать ещё один сеанс (снова подавать «Старт»-условие, адресовать это же устройство и указывать новое направление передачи).

После того, как «Мастер» скажет, к кому именно он обращается и укажет направление передачи данных, — начинается собственно передача: «Мастер» выдаёт на шину данные для «Слэйва» или получает их от него. Эта часть обмена (какие именно данные и в каком порядке «Мастер» должен выдавать на шину, чтобы устройство его поняло и сделало то, что ему нужно) уже определяется каждым конкретным устройством.

Заканчивается каждый сеанс обмена подачей «Мастером» так называемого Stop-условия, которое заключается в изменении уровня на линии Data с низкого на высокий, опять же при наличии высокого уровня на линии Clock. Если на шине сформировано Stop-условие, то закрываются все открытые сеансы обмена.

Внутри сеанса любые изменения на линии Data при наличии высокого уровня на линии Clock запрещены, поскольку в это время происходит считывание данных «Приёмником». Если такие изменения произойдут, то они в любом случае будут восприняты либо как «Старт»-условие (что вызовет прекращение обмена данными), либо как «Стоп»-условие (что будет означать окончание текущего сеанса обмена). Соответственно, во время сеанса обмена установка данных «Передатчиком» (выставление нужного уровня на линии Data) может происходить
только при низком уровне на линии Clock.

Несколько слов по поводу того, в чём в данном случае разница между «прекращением обмена данными» и «окончанием сеанса обмена». В принципе «Мастеру» разрешается, не закрыв первый сеанс обмена, открыть ещё один или несколько сеансов обмена с этим же (например, как было сказано выше, для изменения направления передачи данных) или даже с другими «Слэйвами», подав новое «Старт»-условие без подачи «Стоп»-условия для закрытия предыдущего сеанса. Управлять линией Data, для того, чтобы отвечать «Мастеру», в этом случае будет разрешено тому устройству, к которому «Мастер» обратился последним, однако старый сеанс при этом нельзя считать законченным. И вот почему. Многие устройства (например те же eeprom-ки 24Схх) для ускорения работы складывают данные, полученные от «Мастера» в буфер, а разбираться с этими полученными данными начинают только после получения сигнала об окончании сеанса обмена (то есть «Стоп-условия»).

То есть, например, если на шине висит 2 микросхемы eeprom 24Cxx и вы открыли сеанс записи в одну микросхему и передали ей данные для записи, а потом, не закрывая этот первый сеанс, открыли новый сеанс для записи в другую микросхему, то реальная запись и в первую и во вторую микросхему произойдёт только после формирования на шине «Стоп-условия», которое закроет оба сеанса. После получения данных от «Мастера» eeprom-ка складывает их во внутренний буфер и ждёт окончания сеанса, для того, чтобы начать собственно процесс записи из своего внутреннего буфера непосредственно в eeprom. То есть, если вы после после передачи данных для записи в первую микруху не закрыли этот сеанс, открыли второй сеанс и отправили данные для записи во вторую микруху, а потом, не сформировав «Стоп-условие», выключили питание, то реально данные не запишутся ни в первую микросхему, ни во вторую. Или, например, если вы пишете данные попеременно в две микрухи, то в принципе вы можете открыть один сеанс для записи в первую, потом другой сеанс для записи во вторую, потом третий сеанс для записи опять в первую и т.д., но если вы не будете закрывать эти сеансы, то в конце концов это приведёт к переполнению внутренних буферов и в итоге к потере данных.

Здесь можно привести такую аналогию: ученики в классе («слэйвы») и учитель («мастер»). Допустим учитель вызвал какого-то ученика (пусть будет Вася) к доске и попросил его решить какой-то пример. После того как Вася этот пример решил, учитель вызвал к доске Петю и начал спрашивать у него домашнее задание, но Васю на место не отпустил. Вот в этом случае вроде бы разговор с Васей закончен, — учитель разговаривает с Петей, но Вася стоит у доски и не может спокойно заниматься своими делами (сеанс общения с ним не закрыт).

В случае, если «Слэйв» во время сеанса обмена не успевает обрабатывать данные, — он может растягивать процесс обмена, удерживая линию Clock в состоянии низкого уровня, поэтому «Мастер» должен проверять возврат линии Clock к высокому уровню после того, как он её отпустит. Хотелось бы подчеркнуть, что не стоит путать состояние, когда «Слэйв» не успевает принимать или посылать данные, с состоянием, когда он просто занят обработкой данных, полученных в результате сеанса обмена. В первом случае (во время обмена данными) он может растягивать обмен, удерживая линию Clock, а во втором случае (когда сеанс обмена с ним закончен) он никакие линии трогать не имеет права. В последнем случае он просто не будет отвечать на «обращение» к нему от «Мастера».

Внутри сеанса передача состоит из пакетов по девять бит, передаваемых в обычной положительной логике (то есть высокий уровень — это 1, а низкий уровень — это 0). Из них 8 бит передаёт «Передатчик» «Приёмнику», а последний девятый бит передаёт «Приёмник» «Передатчику». Биты в пакете передаются старшим битом вперёд. Последний, девятый бит называется битом подтверждения ACK (от английского слова acknowledge — подтверждение). Он передаётся в инвертированном виде, то есть 0 на линии соответствует наличию бита подтверждения, а 1 — его отсутствию. Бит подтверждения может сигнализировать как об отсутствии или занятости устройства (если он не установился при адресации), так и о том, что «Приёмник» хочет закончить передачу или о том, что команда, посланная «Мастером», не выполнена.

Каждый бит передаётся за один такт. Та половина такта, во время которой на линии Clock установлен низкий уровень, используется для установки бита данных на шину передающим абонентом (если предыдущий бит передавал другой абонент, то он в это время должен отпустить шину данных). Та половина такта, во время которой на линии Clock установлен высокий уровень, используется принимающим абонентом для считывания установленного значения бита с шины данных.

Вот собственно и всё. На рисунках ниже всё это описание показано в графической форме.

3) Диаграммы и тайминги.


Параметр Обозн. Мин.знач. Комментарий
Свободная шина tBUF 4,7 мкс это минимальное время, в течении которого обе линии должны находиться в свободном состоянии перед подачей «Старт»-условия
Фиксация
«Старт»- условия
tHD;STA 4,0 мкс минимальное время от подачи «Старт»- условия до начала первого такта передачи
Готовность
«Стоп»- условия
tSU;STO 4,0 мкс минимальное время, через которое можно подавать «Стоп»- условие после освобождения шины Clock
Длительность LOW полупер. шины Clock tLOW 4,7 мкс минимальная длительность полупериода установки данных (когда на шине Clock низкий уровень)
Длительность HIGH полупер. шины Clock tHIGH 4,0 мкс минимальная длительность полупериода считывания данных (когда на шине Clock высокий уровень)
Удержание данных tHD;DAT то есть данные на шину Data можно выставлять сразу после спада на линии Clock
Готовность данных tSU;DAT 250 нс то есть поднимать уровень на шине Clock можно не ранее 250 нс после установки данных на шине Data

Минимальные значения времени в таблице указаны для максимальной скорости передачи 100 кбит/с.

Программная реализация мастер-абонента шины I2C в режиме single-master, библиотеки процедур: для PIC, для AVR

Программа для устройства копирования микросхем памяти 24Cxx (здесь можно посмотреть пример использования приведённых выше библиотек для реализации режима I2C-Master на PIC-контроллере)

Программа 2 для контроллера I2C-шлюза, режим Slave из терминалки ПК (а тут посмотреть пример того, как можно сделать I2C-Slave на контроллере AVR)

источник