Меню Рубрики

Формула как находить площадь трапеции

Трапеция – это четырехугольник, у которого две стороны параллельны друг другу. Высотой трапеции называют линию, перпендикулярную основаниями, для удобства ее часто проводят из тупого угла трапеции на большее основание. Средняя линия трапеции – это линия, которая параллельна основаниям, и разделяет боковые стороны ровно пополам. Среднюю линию трапеции можно найти средним арифметическим оснований – сложив их и разделив на два.

Площадь трапеции в самом простом виде – это произведение средней линии на высоту, или если раскрыть формулу средней линии, то произведение полусуммы оснований на высоту.

Доказательством этой формулы будет служить представление площади трапеции, как суммы площадей двух треугольников полученных при проведении диагонали.

Вывести формулу, для того чтобы вычислить площадь трапеции через стороны, можно с помощью метода подстановки.

Проведя две высоты в трапеции, получаем по бокам прямоугольные треугольники с известными гипотенузами и неизвестными катетами x и y . Таким образом x+y=d-b , y=d-b-x .
Одинаковый катет у обоих треугольников – высота, которую мы ищем. Через теорему Пифагора в прямоугольных треугольниках выражаем высоту
Подставляем обратно y в формулу высоты .
Формула площади трапеции через стороны будет выглядеть так:

Площадь трапеции через диагонали и угол между ними считается условным делением трапеции на четыре треугольника, точно также как и площадь любого произвольного четырехугольника.

Площадь равнобедренной трапеции можно найти еще одним способом, если даны угол при основании и радиус вписанной окружности. Дело в том, что центр вписанной окружности, откуда берет свое начало радиус, находится точно в центре трапеции, таким образом, приравнивая высоту и диаметр окружности (либо удвоенный радиус). Также одно из свойств трапеции, описанной вокруг окружности – это равенство суммы оснований и суммы боковых сторон, значит, мы сможем найти среднюю линию, зная боковые стороны. Проведя высоту, из прямоугольного треугольника получаем боковую сторону

источник

Площадь трапеции равна произведению полусуммы ее оснований (a, b) на высоту (h)

Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие не параллельны. Параллельные стороны трапеции называются основаниями, а непараллельные — боковыми сторонами. Площадь трапеции S равна произведению полусуммы ее оснований (a, b) на высоту (h)

Площадь трапеции равна произведению полусуммы оснований a и b на высоту h

Если \(d_<1>\), \(d_<2>\) – диагонали трапеции, а \( \angle \alpha \) – угол между ними , то площадь трапеции можно вычислить по формуле

\[ S = \frac<1> <2>d_ <1>\cdot d_ <2>\cdot \sin (\alpha) \]

  • Параллельные стороны называются основаниями трапеции.
  • Две другие стороны называются боковыми сторонами.
  • Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
  • Расстояние между основаниями называется высотой трапеции.
  • Трапеция, у которой боковые стороны равны, называется равнобокой (или равнобедренной)
  • Трапеция, один из углов которой прямой, называется прямоугольной.
  • Средняя линия трапеции параллельна основаниям и равна их полусумме.
  • Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки.
  • У равнобокой трапеции углы при основании равны.
  • У равнобокой трапеции диагонали равны.
  • Если трапеция равнобокая, то около нее можно описать окружность.
  • Если сумма оснований трапеции равна сумме боковых сторон, то в нее можно вписать окружность.
  • В трапеции середины оснований, точка пересечения диагоналей и продолжения боковых сторон находятся на одной прямой.

Основания равнобедренной (равнобокой) трапеции равны 8 и 20 сантиметров. Боковая сторона равна 10 см. Найдите площадь трапеции, подобной данной, которая имеет высоту 12 см.

Из вершины B трапеции ABCD опустим высоту BM на основание AD. Из вершины C на основание AD опустим высоту CN. Поскольку MBCN является прямоугольником, то

Треугольники, получившиеся в результате того, что мы опустили из меньшего основания равнобокой трапеции на большее две высоты — равны. Таким образом,

AD = BC + AM * 2
AM = (AD — BC) / 2
AM = ( 20 — 8 ) / 2 = 6 см

Таким образом, в треугольнике ABM, образованном высотой, опущенной из меньшего основания трапеции на большее нам известны катет и гипотенуза. Оставшийся катет, который одновременно является высотой трапеции, найдем по теореме Пифагора:

BM2 = AB2 — AM2
BM2 = 102 — 62
BM = 8 см

Поскольку высота трапеции ABCD равна 8 см, а высота подобной трапеции — 12 см, то коэффициент подобия будет равен

Поскольку в подобных фигурах все геометрические размеры пропорциональны друг другу с коэффициентом подобия, найдем площадь подобной трапеции. Произведение полусуммы оснований подобной трапеции на высоту выразим через известные геометрические размеры исходной трапеции и коэффициент подобия:

Sпод = (AD * k + BC * k ) / 2 * ( BM * k )
Sпод = ( 20 * 1,5 + 8 * 1,5 ) / 2 * (8 * 1,5) = ( 30 + 12 ) / 2 * 12 = 252 см 2

источник

Площадь трапеции, формулы и калькулятор для вычисления площади в режиме онлайн. Приведены формулы для всех типов трапеций и частные случаи для равнобедренных трапеций.

Площадь равнобедренной трапеции через малое основание, боковую сторону и угол при большем основании

Площадь равнобедренной трапеции через большее основание, боковую сторону и угол при большем основании

Площадь равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании

Площадь равнобедренной трапеции по радиусу вписанной окружности и углу между сторонами

Данная формула применима только для равнобедренных трапеций, в которые можно вписать окружность.

Площадь равнобедренной трапеции через два ее основания и радиус вписанной окружности

Данная формула применима только для равнобедренных трапеций, в которые можно вписать окружность.

Данная формула применима только для равнобедренных трапеций, в которые можно вписать окружность.

Данная формула применима только для равнобедренных трапеций, в которые можно вписать окружность.

Данная формула применима только для равнобедренных трапеций, в которые можно вписать окружность.

Площадь трапеции – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой, образованной четырьмя последовательно соединенными отрезками (сторонами), два из которых параллельны друг другу

Трапеция – это геометрическая фигура, образованная четырьмя последовательно соединенными отрезками (сторонами), два из которых параллельны друг другу.

Основания трапеции – это параллельные стороны трапеции. Трапеция имеет большое и малое основание.

Средняя линия трапеции – это отрезок соединяющий середины боковых сторон трапеции и при этом всегда параллельный основаниям трапеции.

Высота трапеции – это отрезок проведенный между основаниями трапеции под углом 90 градусов к каждому из снований.

Сумма углов трапеции равна 360 градусов.

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь измеряется в единицах измерения в квадрате: км 2 , м 2 , см 2 , мм 2 и т.д.

источник

Многоликая трапеция. Она может быть произвольной, равнобедренной или прямоугольной. И в каждом случае нужно знать, как найти площадь трапеции. Конечно, проще всего запомнить основные формулы. Но иногда проще воспользоваться той, которая выведена с учетом всех особенностей конкретной геометрической фигуры.

Любой четырехугольник, у которого две стороны параллельны, можно назвать трапецией. В общем случае они не равны и называются основаниями. Большее из них — нижнее, а другое — верхнее.

Две другие стороны оказываются боковыми. У произвольной трапеции они имеют различную длину. Если же они равны, то фигура становится равнобедренной.

Если вдруг угол между любой боковой стороной и основанием окажется равным 90 градусам, то трапеция является прямоугольной.

Все эти особенности могут помочь в решении задачи о том, как найти площадь трапеции.

Среди элементов фигуры, которые могут оказаться незаменимыми в решении задач, можно выделить такие:

  • высота, то есть отрезок, перпендикулярный обоим основаниям;
  • средняя линия, которая имеет своими концами середины боковых сторон.

Это выражение дается основным, потому что чаще всего можно узнать эти величины, даже когда они не даны явно. Итак, чтобы понять, как найти площадь трапеции, потребуется сложить оба основания и разделить их на два. Получившееся значение потом еще умножить на значение высоты.

Если обозначить основания буквами а1 и а2, высоту — н, то формула для площади будет выглядеть так:

Если посмотреть внимательно на предыдущую формулу, то легко заметить, что в ней явно присутствует значение средней линии. А именно, сумма оснований, деленная на два. Пусть средняя линия будет обозначена буквой l, тогда формула для площади станет такой:

Этот способ поможет, если известен угол, образованный ими. Предположим, что диагонали обозначены буквами д1 и д2, а углы между ними — α и β. Тогда формула того, как найти площадь трапеции, будет записана следующим образом:

В этом выражении можно легко заменить α на β. Результат не изменится.

Бывают и такие ситуации, когда в этой фигуре известны именно стороны. Эта формула получается громоздкой и ее сложно запомнить. Но возможно. Пусть боковые стороны имеют обозначение: в1 и в2, основание а1 больше, чем а2. Тогда формула площади примет такой вид:

Читайте также:  Как определить у новорожденного косоглазие

Первый связан с тем, что в нее можно вписать окружность. И, зная ее радиус (он обозначается буквой r), а также угол при основании — γ, можно воспользоваться такой формулой:

Последняя общая формула, которая основана на знании всех сторон фигуры, существенно упростится за счет того, что боковые стороны имеют одинаковое значение:

Понятно, что подойдет любой из перечисленных для произвольной фигуры. Но иногда полезно знать об одной особенности такой трапеции. Она заключается в том, что разность квадратов длин диагоналей равна разности, составленной из квадратов оснований.

Часто формулы для трапеции забываются, в то время как выражения для площадей прямоугольника и треугольника помнятся. Тогда можно применить простой способ. Разделить трапецию на две фигуры, если она прямоугольная, или три. Одна точно будет прямоугольником, а вторая, или две оставшиеся, треугольниками. После вычисления площадей этих фигур останется их только сложить.

Это достаточно простой способ того, как найти площадь прямоугольной трапеции.

В этом случае потребуется воспользоваться выражением, которое позволяет определить расстояние между точками. Его можно применить три раза: для того, чтобы узнать оба основания и одну высоту. А потом просто применить первую формулу, которая описана немного выше.

Для иллюстрации такого метода можно привести такой пример. Даны вершины с координатами А(5; 7), В(8; 7), С(10; 1), Д(1; 1). Нужно узнать площадь фигуры.

До того как найти площадь трапеции, по координатам нужно вычислить длины оснований. Потребуется такая формула:

Верхнее основание обозначено АВ, значит, его длина будет равна √ <(8-5) 2 + (7-7) 2 >= √9 = 3. Нижнее — СД = √ <(10-1) 2 + (1-1) 2 >= √81 = 9.

Теперь нужно провести высоту из вершины на основание. Пусть ее начало будет в точке А. Конец отрезка окажется на нижнем основании в точке с координатами (5; 1), пусть это будет точка Н. Длина отрезка АН получится равной √ <(5-5) 2 + (7-1) 2 >= √36 = 6.

Осталось только подставить получавшиеся значения в формулу площади трапеции:

Задача решена без единиц измерения, потому что не указан масштаб координатной сетки. Он может быть как миллиметр, так и метр.

№ 1. Условие. Известен угол между диагоналями произвольной трапеции, он равен 30 градусам. Меньшая диагональ имеет значение 3 дм, а вторая больше ее в 2 раза. Необходимо посчитать площадь трапеции.

Решение. Для начала нужно узнать длину второй диагонали, потому что без этого не удастся сосчитать ответ. Вычислить ее несложно, 3 * 2 = 6 (дм).

Теперь нужно воспользоваться подходящей формулой для площади:

S = ((3 * 6) / 2) * sin 30º = 18/2 * ½ = 4,5 (дм 2 ). Задача решена.

Ответ: площадь трапеции равна 4,5 дм 2 .

№ 2. Условие. В трапеции АВСД основаниями являются отрезки АД и ВС. Точка Е — середина стороны СД. Из нее проведен перпендикуляр к прямой АВ, конец этого отрезка обозначен буквой Н. Известно, что длины АВ и ЕН равны соответственно 5 и 4 см. Нужно вычислить площадь трапеции.

Решение. Для начала нужно сделать чертеж. Поскольку значение перпендикуляра меньше стороны, к которой он проведен, то трапеция будет немного вытянутой вверх. Так ЕН окажется внутри фигуры.

Чтобы отчетливо увидеть ход решения задачи, потребуется выполнить дополнительное построение. А именно, провести прямую, которая будет параллельна стороне АВ. Точки пересечения этой прямой с АД — Р, а с продолжением ВС — Х. Получившаяся фигура ВХРА — параллелограмм. Причем его площадь равна искомой. Это связано с тем, что треугольники, которые получились при дополнительном построении, равны. Это следует из равенства стороны и двух прилежащих к ней углов, один — вертикальный, другой — накрест лежащий.

Найти площадь параллелограмма можно по формуле, которая содержит произведение стороны и высоты, опущенной на нее.

Таким образом, площадь трапеции равна 5 * 4 = 20 см 2 .

№ 3. Условие. Элементы равнобедренной трапеции имеют такие значения: нижнее основание — 14 см, верхнее — 4 см, острый угол — 45º. Нужно вычислить ее площадь.

Решение. Пусть меньшее основание имеет обозначение ВС. Высота, проведенная из точки В, будет называться ВН. Поскольку угол 45º, то треугольник АВН получится прямоугольный и равнобедренный. Значит, АН=ВН. Причем АН очень легко найти. Она равна половине разности оснований. То есть (14 — 4) / 2 = 10 / 2 = 5 (см).

Основания известны, высота сосчитана. Можно пользоваться первой формулой, которая здесь была рассмотрена для произвольной трапеции.

S = ((14 + 4) / 2) * 5 = 18/2 * 5 = 9 * 5 = 45 (см 2 ).

Ответ: Искомая площадь равна 45 см 2 .

№ 4. Условие. Имеется произвольная трапеция АВСД. На ее боковых сторонах взяты точки О и Е, так что ОЕ параллельна основанию АД. Площадь трапеции АОЕД в пять раз больше, чем у ОВСЕ. Вычислить значение ОЕ, если известны длины оснований.

Решение. Потребуется провести две параллельные АВ прямые: первую через точку С, ее пересечение с ОЕ — точка Т; вторую через Е и точкой пересечения с АД будет М.

Пусть неизвестная ОЕ=х. Высота меньшей трапеции ОВСЕ — н1, большей АОЕД — н2.

Поскольку площади этих двух трапеций соотносятся как 1 к 5, то можно записать такое равенство:

Высоты и стороны треугольников пропорциональны по построению. Поэтому можно записать еще одно равенство:

В двух последних записях в левой части стоят равные величины, значит, можно написать, что (х + а1) / (5(х + а2)) равно (х — а2) / (а1 — х).

Здесь требуется провести ряд преобразований. Сначала перемножить крест накрест. Появятся скобки, которые укажут на разность квадратов, после применения этой формулы получится короткое уравнение.

В нем нужно раскрыть скобки и перенести все слагаемые с неизвестной «х» в левую сторону, а потом извлечь квадратный корень.

источник

Задачи на площадь трапеции решают в школьном курсе планиметрии. Расчеты не слишком сложны в изучении этой темы, однако с течением времени забывается и теоретический материал и формулы для вычисления площади трапеции. Из данного материала Вы научитесь находить площадь трапеции и ознакомитесь с распространенными для вычислений формулами.

1. Площадь трапеции равна произведению полусуммы основ на высоту:

Средняя линия трапеции равна полусумме оснований, таким образом предыдущую формулу площади можно записать в виде

Ниже на рисунке приведены соответствующие формулы и обозначения

2. Если задано диагонали трапеции и угол между ними (смотрите рисунок )

то площадь трапеции находят по формуле

Данная формула, как и предыдущая, достаточно проста в вычислениях.

Следующая формула требует большего количества расчетов.

3. Бывают сложные примеры на трапецию когда задано все четыре ее стороны. В таких случаях используют первую формулу площади трапеции


или вторую

При применении формулы следует помнит, что между сторонами должны выполняться условия b>a и c>d.

4. Если в задании известно что трапеция равнобедренная (боковые стороны равны ) то для того, чтобы найти площадь трапеции кроме выше приведенных формул используют следующие:

  • если задано основу, боковую сторону и угол между ними

  • если известен радиус вписанной окружности и угол при основании

Здесь r – радиус окружности, alpha – угол при основании, c – боковая сторона равнобокой трапеции.

Если радиус вписанной окружности и нужен угол не известны в условии задания — пользуйтесь выше приведенным формулам площади трапеции.

Теперь Вы знаете как найти площадь трапеции – используйте приведенные формулы на практике и не питайте проблем в обучении.

источник

1. Формула площади трапеции через основания и высоту

a нижнее основание

b верхнее основание

m средняя линия

h высота трапеции

Формула площади трапеции, ( S ):

2. Формула площади трапеции через диагонали и угол между ними

α , β — углы между диагоналями

Формула площади трапеции, ( S ):

3. Формула площади трапеции через четыре стороны

a нижнее основание

b верхнее основание

c , d — боковые стороны

Формула площади трапеции, ( S ):

источник

1. Формула площади равнобедренной трапеции через стороны и угол

а — нижнее основание

b — верхнее основание

с — равные боковые стороны

α — угол при нижнем основании

Формула площади равнобедренной трапеции через стороны, ( S ):

Формула площади равнобедренной трапеции через стороны и угол, ( S ):

2. Формулы площади равнобедренной трапеции если в нее вписана окружность

R — радиус вписанной окружности

Читайте также:  При каких болезнях бывает понос

D — диаметр вписанной окружности

O — центр вписанной окружности

H — высота трапеции

α , β — углы трапеции

а — нижнее основание

b — верхнее основание

Формула площади равнобедренной трапеции через радиус вписанной окружности, ( S ):

СПРАВЕДЛИВО, для вписанной окружности в равнобедренную трапецию:

R — радиус вписанной окружности

m — средняя линия

O — центр вписанной окружности

c — боковые стороны

а — нижнее основание

b — верхнее основание

Формула площади равнобедренной трапеции через радиус вписанной окружности, стороны и среднюю линию ( S ):

СПРАВЕДЛИВО, для вписанной окружности в равнобедренную трапецию:

3. Формула площади равнобедренной трапеции через диагонали и угол между ними

d — диагональ трапеции

α , β — углы между диагоналями

Формула площади равнобедренной трапеции через диагонали и угол между ними, ( S ):

4. Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании

c — боковая сторона

m — средняя линия трапеции

α , β — углы при основании

Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании, ( S ):

5. Формула площади равнобедренной трапеции через основания и высоту

a — нижнее основание

b — верхнее основание

h — высота трапеции

Формула площади равнобедренной трапеции через основания и высоту, ( S ):

источник

Для того, чтобы вычислить площадь трапеции, необходимо воспользоваться следующей формулой:

В том случае, если площадь и длины оснований известны, то найти высоту можно по формуле:

Если в трапеции известны ее площадь и длина средней линии, то найти ее высоту не составит труда:

S = m*h, где m — средняя линия, отсюда:

Для того, чтобы оба способа были более понятными, можно привести пару примеров.

Пример 1: длина средней линии трапеции 10 см, ее площадь 100 см². Для нахождения высоты этой трапеции надо совершить действие:

Ответ: высота данной трапеции 10 см

Пример 2: площадь трапеции 100 см², длины оснований равны 8 см и 12 см. Для нахождения высоты этой трапеции нужно выполнить действие:

h = (2*100)/(8+12) = 200/20 = 10 см

Ответ: высота данной трапеции 20 см

  • Знание сторон, оснований, средней линии трапеции, а так же, опционально, ее площадь и/или периметр.

Одним из способов вычислить площадь трапеции является произведение высоты и средней линии. Допустим, что имеется равнобедренная трапеция. Тогда высота равнобедренной трапеции с основаниями a и b, площадью S и периметром P будет рассчитана так:

h=2 х S/(P-2 х d). (см. рис 1)

Если известна только площадь трапеции и ее основания, то формулу расчета высоты можно вывести из формулы площади трапеции S = 1/2h x (a+b):

Самая распространенная формула для вычисления площади трапеции — S = (a+b)h/2. Для случая равнобедренной трапеции она явным образом не поменяется. Можно лишь отметить, что у равнобедренной трапеции углы при любом из оснований будут равны (DAB = CDA = x). Так как ее боковые стороны тоже равны (AB = CD = с), то и высоту h можно посчитать по формуле h = с*sin(x).

Аналогично, площадь трапеции можно записать через среднюю сторону трапеции: S = mh.

Рассмотрим частный случай равнобедренной трапеции, когда ее диагонали перпендикулярны. В этом случае, по свойству трапеции, ее высота равна полусумме оснований.

Тогда площадь трапеции можно вычислить по формуле: S = (a+b)^2/4.

Любая трапеция обладает рядом свойств:

— средняя линяя трапеции равна полусумме ее оснований;

— отрезок, который соединяет между собой диагонали трапеции, равен половине разности его оснований;

— если через середины оснований провести прямую, то она пересечет точку пересечения диагоналей трапеции;

— в трапецию можно вписать окружность в том случае, если сумма оснований данной трапеции равна сумме ее боковых сторон.

Пользуйтесь этими свойствами при решении задач.

Существует еще несколько формул для расчета площади трапеции.

S = m*h, где m — средняя линия трапеции, h — высота. Эта формула может быть выведена из основной, поскольку средняя линия трапеции равна полусумме длин оснований и графически проводится параллельно им, соединяя середины боковых сторон.

Существует формула для определения площади трапеции через длины всех сторон:

S = ((a + b)/2)*√(c^2 — (((b — a)^2 + c^2 — d^2)/(2*(b — a)))^2), где a и b — основания, c и d — боковые стороны трапеции.

Предположим, что в равнобедренную трапецию вписана окружность радиуса r. Тогда площадь трапеции можно найти, если известен угол при основании:

Например, если угол равен 30°, то S = 8*r^2.

источник

В математике известно несколько видов четырехугольников: квадрат, прямоугольник, ромб, параллелограмм. Среди них и трапеция — вид выпуклого четырехугольника, у которого две стороны параллельны, а две другие нет. Параллельные противоположные стороны называются основаниями, а две другие – боковыми сторонами трапеции. Отрезок, который соединяет середины боковых сторон, называется средней линией. Существует несколько видов трапеций: равнобедренная, прямоугольная, криволинейная. Для каждого вида трапеции есть формулы для нахождения площади.

Чтобы найти площадь трапеции, нужно знать длину ее оснований и высоту. Высота трапеции — это отрезок, перпендикулярный основаниям. Пусть верхнее основание — a, нижнее основание — b, а высота — h. Тогда вычислить площадь S можно по формуле:

т.е. взять полусумму оснований, умноженную на высоту.

Трапеция

Также удастся вычислить площадь трапеции, если известно значение высоты и средней линии. Обозначим среднюю линию — m. Тогда

Решим задачу посложнее: известны длины четырех сторон трапеции — a, b, c, d. Тогда площадь отыщется по формуле:

Если известны длины диагоналей и угол между ними, то площадь ищется так:

где d с индексами 1 и 2 — диагонали. В данной формуле в расчете приводится синус угла.

При известных длинах оснований a и b и двух углах при нижнем основании площадь вычисляется так:

S = ½ * (b2 — a2) * (sin α * sin β / sin(α + β))

Равнобедренная трапеция — это частный случай трапеции. Ее отличие в том, что такая трапеция — это выпуклый четырехугольник с осью симметрии, проходящей через середины двух противоположных сторон. Ее боковые стороны равны.

Равнобедренная трапеция

Найти площадь равнобедренной трапеции можно несколькими способами.

  • Через длины трех сторон. В этом случае длины боковых сторон будут совпадать, поэтому обозначены одной величиной — с, а и b — длины оснований:

  • Если известна длина верхнего основания, боковой стороны и величина угла при нижнем основании, то площадь вычисляется так:

S = c * sin α * (a + c * cos α)

где а — верхнее основание, с — боковая сторона.

  • Если вместо верхнего основания известна длина нижнего – b, площадь рассчитывается по формуле:

S = c * sin α * (b – c * cos α)

  • Если когда известны два основания и угол при нижнем основании, площадь вычисляется через тангенс угла:
  • Также площадь рассчитывается через диагонали и угол между ними. В этом случае диагонали по длине равны, поэтому каждую обозначаем буквой d без индексов:
  • Вычислим площадь трапеции, зная длину боковой стороны, средней линии и величину угла при нижнем основании.

Пусть боковая сторона — с, средняя линия — m, угол — a, тогда:

Иногда в равностороннюю трапецию можно вписать окружность, радиус которой будет — r.

Круг в трапеции

Известно, что в любую трапецию можно вписать окружность, если сумма длин оснований равна сумме длин ее боковых сторон. Тогда площадь найдется через радиус вписанной окружности и угол при нижнем основании:

Такой же расчет производится и через диаметр D вписанной окружности (кстати, он совпадает с высотой трапеции):

Зная основания и угол, площадь равнобедренной трапеции вычисляется так:

(эта и последующие формулы верны только для трапеций с вписанной окружностью).

Трапеция в круге

Через основания и радиус окружности площадь ищется так:

Если известны только основания, то площадь считается по формуле:

Через основания и боковую линию площадь трапеции с вписанным кругом и через основания и среднюю линию — m вычисляется так:

Площадь прямоугольной трапеции

Прямоугольной называется трапеция, у которой одна из боковых сторон перпендикулярна основаниям. В этом случае боковая сторона по длине совпадает с высотой трапеции.

Прямоугольная трапеция представляет из себя квадрат и треугольник. Найдя площадь каждой из фигур, сложите полученные результаты и получите общую площадь фигуры.

Прямоугольная трапеция

Также для вычисления площади прямоугольной трапеции подходят общие формулы для расчета площади трапеции.

  • Если известны длины оснований и высота (или перпендикулярная боковая сторона), то площадь рассчитывается по формуле:

В качестве h (высоты) может выступать боковая сторона с. Тогда формула выглядит так:

  • Другой способ рассчитать площадь — перемножить длину средней линии на высоту:

или на длину боковой перпендикулярной стороны:

  • Следующий способ вычисления — через половину произведения диагоналей и синус угла между ними:
Читайте также:  Как соединить плинтуса в углах

Прямоугольная трапеция с перпендикулярными диагоналями

Если диагонали перпендикулярны, то формула упрощается до:

  • Еще один способ вычисления — через полупериметр (сумма длин двух противоположных сторон) и радиус вписанной окружности.

Эта формула действительна для оснований. Если брать длины боковых сторон, то одна из них будет равна удвоенному радиусу. Формула будет выглядеть так:

  • Если в трапецию вписана окружность, то площадь вычисляется так же:

где m — длина средней линии.

Криволинейная трапеция представляет из себя плоскую фигуру, ограниченную графиком неотрицательной непрерывной функции y = f(x), определенной на отрезке [a;b], осью абсцисс и прямыми x = a, x = b. По сути, две ее стороны параллельны друг другу (основания), третья сторона перпендикулярна основаниям, а четвертая представляет из себя кривую, соответствующую графику функции.

Криволинейная трапеция

Площадь криволинейной трапеции ищут через интеграл по формуле Ньютона-Лейбница:

Так вычисляются площади различных видов трапеций. Но, помимо свойств сторон, трапеции обладают одинаковыми свойствами углов. Как у всех существующих четырехугольников, сумма внутренних углов трапеции равна 360 градусов. А сумма углов, прилежащих к боковой стороне, — 180 градусам.

источник

В предыдущих статьях мы уже рассматривали как найти площадь треугольника и как найти площадь прямоугольника. Теперь можно приступить к рассмотрению вопроса как найти площадь трапеции. Данная задача в быту возникает очень редко, но иногда оказывается необходимой, к примеру, чтобы найти площадь комнаты в форме трапеции, которые все чаще применяют при строительстве современных квартир, или в дизайн-проектах по ремонту.

Как и у треугольников, у трапеция есть частные виды в виде равнобедренной (равнобокой) трапеции, у которой длина боковых сторон одинаковы и прямоугольной трапеции, у которой одна из сторон образует с основаниями прямой угол.

Трапеции обладают некоторыми интересными свойствами:

  1. Средняя линия трапеции равна полусумме оснований и параллельна им.
  2. У равнобедренных трапеций боковые стороны и углы которые они образуют с основаниями равны.
  3. Середины диагоналей трапеции и точка пересечения ее диагоналей находятся на одной прямой.
  4. Если сумма боковых сторон трапеции равна сумме оснований, то в нее можно вписать круг
  5. Если сумма углов, образованных сторонами трапеции у любого ее основания равна 90, то длина отрезка, соединяющего середины оснований, равна их полуразности.
  6. Равнобедренную трапецию можно описать окружностью. И наоборот. Если в трапеция вписывается в окружность, значит она равнобедренная.
  7. Отрезок, проходящий через середины оснований равнобедренной трапеции будет перпендикулярен ее основаниям и представляет собой ось симетрии.

Как найти площадь трапеции.

Понять и запомнить эту формулу можно следующим образом. Как следует из рисунка ниже трапецию с использованием средней линии можно преобразовать в прямоугольник, длина которого и будет равна полусумме оснований.

Можно также любую трапецию разложить на более простые фигуры: прямоугольник и один, или два треугольника и если вам так проще, то найти площадь трапеции, как сумму площадей составляющих ее фигур.

Есть еще одна простая формула для подсчета ее площади. Согласно ней площадь трапеции равна произведению ее средней линии на высоту трапеции и записывается в виде: S = m*h, где S-площадь, m-длина средней линии, h-высота трапеции. Данная формула больше подходит для задач по математике, чем для бытовых задач, так как в реальных условиях вам не будет известна длина средней линии без предварительных расчетов. А известны вам будут только длины оснований и боковых сторон.

В этом случае площадь трапеции может быть найдена по формуле:

где S-площадь, a,b-основания, c,d-боковые стороны трапеции.

Существуют еще несколько способов того, как найти площади трапеции. Но, они примерно также неудобны как и последняя формула, а значит не имеет смысла на них останавливаться. Поэтому, рекомендуем вам пользоваться первой формулой из статьи и желаем всегда получать точные результаты.

источник

Трапеция – это одна из фигур, которая часто используется в геометрии. Трапеция – это выпуклый четырёхугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Те стороны, что параллельны, называются основаниями, а те, что не параллельны — боковыми сторонами.

Отрезок, который соединяет середины боковых сторон, называется средней линией. Все эти термины служат помощниками в определении площади трапеции. Для её нахождения существует несколько формул.

Первая формула использует основания и высоту трапеции. Для того, чтобы найти площадь (S) по такому принципу, вам необходимо пройти следующие этапы:

Найти длину первого основания, которую мы обозначим как а.

Найти длину второго основания, которую мы обозначим, как b.

Измерить высоту и обозначить её как h.

Сложить длины оснований (а+ b).

Разделить полученную сумму на 2 ((а+ b):2).

Умножить полученный результат на длину высоты (½ (a+b) * h).

Формула для нахождения площади выглядит следующим образом: S = ½ (a+b) * h. Или другими словами полусумма оснований, умноженная на высоту.

Вторая формула заключает в себе величину средней линии и высоты. Для того, чтобы найти площадь (S) по такому принципу, вам необходимо пройти следующие этапы:

Найти величину высоты (h).

Провести среднюю линию, соединив середины боковых сторон между собой (m).

Умножить высоту на среднюю линию (h* m).

Формула для нахождения площади выглядит следующим образом: S = h * m. Или другими словами высота, умноженная на среднюю линию.

Существуют и другие варианты того, как найти площадь трапеции, но они являются более сложными, а следовательно и не такими частыми в использовании.

Приведенные выше формулы просты и удобны в использовании. Неотступно выполняя один пункт инструкции за другим, вы сможете безошибочно определить площадь трапеции.

источник

Как найти площадь трапеции? Для этого в зависимости от данных условия можно использовать несколько формул.

1. Площадь трапеции равна произведению полусуммы её оснований на высоту.

Для трапеции ABCD, AD ∥ BC, с высотой BF площадь равна

Если AD=a, BC=b, BF=h, формула для нахождения площади трапеции

2. Площадь трапеции равна произведению её средней линии на высоту.

Если MN=m, BF=h, формула для нахождения площади трапеции через среднюю линию и высоту

3. Площадь трапеции равна половине произведения её диагоналей на синус угла между ними.

Если AC=d1, BD=d2, ∠COD=φ, то формула для нахождения площади трапеции через диагонали —

Если диагонали трапеции перпендикулярны,

то формула площади трапеции

4. Площадь трапеции равна произведению её полупериметра на радиус вписанной окружности.

Так как в трапецию можно вписать окружность, если суммы ее противолежащих сторон равны, то AB+CD=AD+BC. Следовательно, полупериметр трапеции равен сумме её оснований: p=AD+BC или p=a+b.

Таким образом, получаем еще одну формулу для нахождения площади трапеции через радиус вписанной окружности:

(Так как радиус вписанной в трапецию окружности равен половине высоты трапеции:

то эта формула может быть получена непосредственно из формулы из пункта 1).

источник

Трапеция является фигурой с двумя параллельными противоположными сторонами, при этом все четыре стороны могут быть разной длины. Параллельные стороны b и d называются меньшим и большим основанием трапеции, a и c – боковыми сторонами. Зная стороны трапеции, можно найти все характеризующие ее параметры. Периметр трапеции, зная стороны, представляет собой их сумму. P=a+b+c+d

Высота трапеции является перпендикуляром, соединяющим два основания, и может быть проведена в любой их точке, но удобнее всего это делать из вершины углов при меньшем основании, так как тогда образуется прямоугольный треугольник, из которого выводится формула. (рис.103.1) h=√(a^2-(((d-b)^2+a^2-c^2)/2(d-b) )^2 )

Средней линией трапеции называется отрезок, соединяющий середины боковых сторон, и равный полусумме оснований. (рис.103.2) m=(b+d)/2

Площадь трапеции равна произведению ее высоты на среднюю линию. Чтобы найти площадь трапеции через стороны, необходимо развернуть эту формулу до ее истоков, заменив неизвестные переменные. S=hm=√(a^2-(((d-b)^2+a^2-c^2)/2(d-b) )^2 )*(b+d)/2

Если в трапецию можно вписать окружность (а это возможно, если противоположные стороны в сумме дают одно и то же число), то радиус вписанной окружности будет равен половине высоты, или половине квадратного корня из произведения меньшего основания на большее, с учетом условия для окружности. (рис.103.3) r=h/2=√bd/2

Описать окружность можно только вокруг равнобокой трапеции, и если она является таковой, то радиус описанной окружности будет равен радиусу окружности, описанной вокруг треугольника, образованного диагональю. (рис.103.4) R=(abd_1)/√((a+b+d_1)(a+b)(a+d_1)(b+d_1))

Диагонали трапеции рассчитываются по формулам, приведенным через теорему Пифагора в треугольниках, образованных высотой и диагоналями. d_1=√(c^2+db d(c^2-a^2 )/(d-b)) d_2=√(a^2+db (b(c^2-a^2))/(d-b))

источник